-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreimplement_mat2gen.py
387 lines (333 loc) · 13.1 KB
/
reimplement_mat2gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import torch
import random
from torch import nn
import torch.nn.functional as F
from torch.nn import Parameter
import math
from transformer import (
TransformerLayer,
SinusoidalPositionalEmbedding,
Embedding,
MultiheadAttention,
)
import argparse
PAD, BOS, EOS, UNK = "<_>", "<bos>", "<eos>", "<unk>"
class Vocab(object):
def __init__(self, filename, with_SE):
with open(filename) as f:
if with_SE:
self.itos = [PAD, BOS, EOS, UNK] + [
token.strip() for token in f.readlines()
]
else:
self.itos = [PAD, UNK] + [
token.strip() for token in f.readlines()
]
self.stoi = dict(zip(self.itos, range(len(self.itos))))
self._size = len(self.stoi)
self._padding_idx = self.stoi[PAD]
self._unk_idx = self.stoi[UNK]
self._start_idx = self.stoi.get(BOS, -1)
self._end_idx = self.stoi.get(EOS, -1)
def idx2token(self, x):
if isinstance(x, list):
return [self.idx2token(i) for i in x]
return self.itos[x]
def token2idx(self, x):
if isinstance(x, list):
return [self.token2idx(i) for i in x]
return self.stoi.get(x, self.unk_idx)
@property
def size(self):
return self._size
@property
def padding_idx(self):
return self._padding_idx
@property
def unk_idx(self):
return self._unk_idx
@property
def start_idx(self):
return self._start_idx
@property
def end_idx(self):
return self._end_idx
def ListsToTensor(xs, vocab, with_S=False, with_E=False):
batch_size = len(xs)
lens = [len(x) + (1 if with_S else 0) + (1 if with_E else 0) for x in xs]
mx_len = max(max(lens), 1)
ys = []
for i, x in enumerate(xs):
y = (
([vocab.start_idx] if with_S else [])
+ [vocab.token2idx(w) for w in x]
+ ([vocab.end_idx] if with_E else [])
+ ([vocab.padding_idx] * (mx_len - lens[i]))
)
ys.append(y)
# lens = torch.LongTensor([ max(1, x) for x in lens])
data = torch.LongTensor(ys).t_().contiguous()
return data.cuda()
def batchify(data, vocab_src, vocab_tgt):
src = ListsToTensor([x[0] for x in data], vocab_src)
tgt = ListsToTensor([x[1] for x in data], vocab_tgt)
return src, tgt
class DataLoader(object):
def __init__(self, filename, vocab_src, vocab_tgt, batch_size, for_train):
all_data = [
[x.split() for x in line.strip().split("|")]
for line in open(filename).readlines()
]
self.data = []
for d in all_data:
skip = not (len(d) == 4)
for j, i in enumerate(d):
if not for_train:
d[j] = i[:500]
if len(d[j]) == 0:
d[j] = [UNK]
if len(i) == 0 or len(i) > 500:
skip = True
if not (skip and for_train):
self.data.append(d)
self.batch_size = batch_size
self.vocab_src = vocab_src
self.vocab_tgt = vocab_tgt
self.train = for_train
def __iter__(self):
idx = list(range(len(self.data)))
if self.train:
random.shuffle(idx)
cur = 0
while cur < len(idx):
data = [self.data[i] for i in idx[cur : cur + self.batch_size]]
cur += self.batch_size
yield batchify(data, self.vocab_src, self.vocab_tgt)
raise StopIteration
def label_smoothed_nll_loss(log_probs, target, eps):
# log_probs: N x C
# target: N
nll_loss = -log_probs.gather(dim=-1, index=target.unsqueeze(1)).squeeze(1)
if eps == 0.0:
return nll_loss
smooth_loss = -log_probs.sum(dim=-1)
eps_i = eps / log_probs.size(-1)
loss = (1.0 - eps) * nll_loss + eps_i * smooth_loss
return loss
class Ranker(nn.Module):
def __init__(
self,
vocab_src,
vocab_tgt,
embed_dim,
ff_embed_dim,
num_heads,
dropout,
num_layers,
):
super(Ranker, self).__init__()
self.transformer_src = nn.ModuleList()
self.transformer_tgt = nn.ModuleList()
for i in range(num_layers):
self.transformer_src.append(
TransformerLayer(embed_dim, ff_embed_dim, num_heads, dropout)
)
self.transformer_tgt.append(
TransformerLayer(embed_dim, ff_embed_dim, num_heads, dropout)
)
self.embed_dim = embed_dim
self.embed_scale = math.sqrt(embed_dim)
self.embed_positions = SinusoidalPositionalEmbedding(embed_dim)
self.embed_src_layer_norm = nn.LayerNorm(embed_dim)
self.embed_tgt_layer_norm = nn.LayerNorm(embed_dim)
self.embed_src = Embedding(
vocab_src.size, embed_dim, vocab_src.padding_idx
)
self.embed_tgt = Embedding(
vocab_tgt.size, embed_dim, vocab_tgt.padding_idx
)
self.absorber_src = Parameter(torch.Tensor(embed_dim))
self.absorber_tgt = Parameter(torch.Tensor(embed_dim))
self.attention_src = MultiheadAttention(
embed_dim, 1, dropout, weights_dropout=False
)
self.attention_tgt = MultiheadAttention(
embed_dim, 1, dropout, weights_dropout=False
)
self.scorer = nn.Linear(embed_dim, embed_dim)
self.baseline_transformer = nn.Linear(embed_dim, embed_dim)
self.baseline_scorer = nn.Linear(embed_dim, 1)
self.dropout = dropout
self.vocab_src = vocab_src
self.vocab_tgt = vocab_tgt
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.absorber_src, mean=0, std=self.embed_dim ** -0.5)
nn.init.normal_(self.absorber_tgt, mean=0, std=self.embed_dim ** -0.5)
nn.init.xavier_uniform_(self.scorer.weight)
nn.init.xavier_uniform_(self.baseline_transformer.weight)
nn.init.constant_(self.scorer.bias, 0.0)
nn.init.constant_(self.baseline_transformer.bias, 0.0)
nn.init.constant_(self.baseline_scorer.weight, 0.0)
nn.init.constant_(self.baseline_scorer.bias, 0.0)
def work(self, src_input, tgt_input):
beta, s, m = self.forward(src_input, tgt_input, work=True)
return beta.tolist(), s.tolist(), m.tolist()
def forward(self, src_input, tgt_input, work=False):
_, bsz = src_input.size()
src_emb = self.embed_src_layer_norm(
self.embed_src(src_input) * self.embed_scale
+ self.embed_positions(src_input)
)
tgt_emb = self.embed_tgt_layer_norm(
self.embed_tgt(tgt_input) * self.embed_scale
+ self.embed_positions(tgt_input)
)
src = F.dropout(src_emb, p=self.dropout, training=self.training)
tgt = F.dropout(tgt_emb, p=self.dropout, training=self.training)
# seq_len x bsz x embed_dim
absorber = self.embed_scale * self.absorber_src.unsqueeze(
0
).unsqueeze(0).expand(1, bsz, self.embed_dim)
src = torch.cat([absorber, src], 0)
absorber = self.embed_scale * self.absorber_tgt.unsqueeze(
0
).unsqueeze(0).expand(1, bsz, self.embed_dim)
tgt = torch.cat([absorber, tgt], 0)
src_padding_mask = src_input.eq(self.vocab_src.padding_idx)
tgt_padding_mask = tgt_input.eq(self.vocab_tgt.padding_idx)
absorber = src_padding_mask.data.new(1, bsz).zero_()
src_padding_mask = torch.cat([absorber, src_padding_mask], 0)
tgt_padding_mask = torch.cat([absorber, tgt_padding_mask], 0)
for layer in self.transformer_src:
src, _, _ = layer(src, self_padding_mask=src_padding_mask)
for layer in self.transformer_tgt:
tgt, _, _ = layer(tgt, self_padding_mask=tgt_padding_mask)
src, src_all = src[:1], src[1:]
tgt, tgt_all = tgt[:1], tgt[1:]
src_baseline = self.baseline_scorer(
torch.tanh(self.baseline_transformer(src.squeeze(0)))
).squeeze(1)
src_padding_mask = src_padding_mask[1:]
tgt_padding_mask = tgt_padding_mask[1:]
_, (src_weight, src_v) = self.attention_src(
src, src_all, src_all, src_padding_mask, need_weights=True
)
_, (tgt_weight, tgt_v) = self.attention_tgt(
tgt, tgt_all, tgt_all, tgt_padding_mask, need_weights=True
)
# v: bsz x seq_len x dim
src_v = src_v + src_emb.transpose(0, 1)
tgt_v = tgt_v + tgt_emb.transpose(0, 1)
# w: 1 x bsz x seq_len
src = torch.bmm(src_weight.transpose(0, 1), src_v).squeeze(1)
tgt = torch.bmm(tgt_weight.transpose(0, 1), tgt_v).squeeze(1)
if work:
# bsz x dim bsz x seq_len x dim
s = torch.bmm(tgt_v, self.scorer(src).unsqueeze(2)).squeeze(2)
max_len = tgt_padding_mask.size(0)
m = max_len - tgt_padding_mask.float().sum(dim=0).to(
dtype=torch.int
)
beta = tgt_weight.squeeze(0)
return beta, s, m # bsz x seq_len, bsz
src = F.dropout(src, p=self.dropout, training=self.training)
tgt = F.dropout(tgt, p=self.dropout, training=self.training)
scores = torch.mm(self.scorer(src), tgt.transpose(0, 1)) # bsz x bsz
baseline_mse = F.mse_loss(
src_baseline, scores.mean(dim=1), reduction="mean"
)
log_probs = F.log_softmax(scores, -1)
gold = torch.arange(bsz).cuda()
_, pred = torch.max(log_probs, -1)
acc = torch.sum(torch.eq(gold, pred).float()) / bsz
loss = label_smoothed_nll_loss(log_probs, gold, 0.1)
loss = loss.mean()
return loss + baseline_mse, acc
def parse_config():
parser = argparse.ArgumentParser()
parser.add_argument("--vocab_src", type=str)
parser.add_argument("--vocab_tgt", type=str)
parser.add_argument("--embed_dim", type=int)
parser.add_argument("--ff_embed_dim", type=int)
parser.add_argument("--num_heads", type=int)
parser.add_argument("--num_layers", type=int)
parser.add_argument("--dropout", type=float)
parser.add_argument("--epochs", type=int)
parser.add_argument("--lr", type=float)
parser.add_argument("--train_batch_size", type=int)
parser.add_argument("--dev_batch_size", type=int)
parser.add_argument("--print_every", type=int)
parser.add_argument("--eval_every", type=int)
parser.add_argument("--train_data", type=str)
parser.add_argument("--dev_data", type=str)
parser.add_argument("--which_ranker", type=str)
return parser.parse_args()
def update_lr(optimizer, coefficient):
for param_group in optimizer.param_groups:
param_group["lr"] = param_group["lr"] * coefficient
if __name__ == "__main__":
random.seed(19940117)
torch.manual_seed(19940117)
args = parse_config()
vocab_src = Vocab(args.vocab_src, with_SE=False)
vocab_tgt = Vocab(args.vocab_tgt, with_SE=False)
model = Ranker(
vocab_src,
vocab_tgt,
args.embed_dim,
args.ff_embed_dim,
args.num_heads,
args.dropout,
args.num_layers,
)
model = model.cuda()
optimizer = torch.optim.Adam(model.parameters(), args.lr)
train_data = DataLoader(
args.train_data, vocab_src, vocab_tgt, args.train_batch_size, True
)
dev_data = DataLoader(
args.dev_data, vocab_src, vocab_tgt, args.dev_batch_size, True
)
model.train()
loss_accumulated = 0.0
acc_accumulated = 0.0
batches_processed = 0
best_dev_acc = 0
for epoch in range(args.epochs):
for src_input, tgt_input in train_data:
optimizer.zero_grad()
loss, acc = model(src_input, tgt_input)
loss_accumulated += loss.item()
acc_accumulated += acc
batches_processed += 1
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 5.0)
optimizer.step()
if batches_processed % args.print_every == -1 % args.print_every:
print(
"Batch %d, loss %.5f, acc %.5f"
% (
batches_processed,
loss_accumulated / batches_processed,
acc_accumulated / batches_processed,
)
)
if batches_processed % args.eval_every == -1 % args.eval_every:
model.eval()
dev_acc = 0.0
dev_batches = 0
for src_input, tgt_input in dev_data:
_, acc = model(src_input, tgt_input)
dev_acc += acc
dev_batches += 1
dev_acc = dev_acc / dev_batches
if best_dev_acc < dev_acc:
best_dev_acc = dev_acc
torch.save(
{"args": args, "model": model.state_dict()},
"ckpt_persona/epoch%d_batch%d_acc_%.3f"
% (epoch, batches_processed, dev_acc),
)
print("Dev Batch %d, acc %.5f" % (batches_processed, dev_acc))
model.train()