forked from awslabs/aws-cv-task2vec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtask_similarity.py
233 lines (171 loc) · 7.05 KB
/
task_similarity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#!/usr/bin/env python3
# Copyright 2017-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
import itertools
import scipy.spatial.distance as distance
import numpy as np
import copy
import pickle
_DISTANCES = {}
# TODO: Remove methods that do not perform well
def _register_distance(distance_fn):
_DISTANCES[distance_fn.__name__] = distance_fn
return distance_fn
def is_excluded(k):
exclude = ['fc', 'linear']
return any([e in k for e in exclude])
def load_embedding(filename):
with open(filename, 'rb') as f:
e = pickle.load(f)
return e
def get_trivial_embedding_from(e):
trivial_embedding = copy.deepcopy(e)
for l in trivial_embedding['layers']:
a = np.array(l['filter_logvar'])
a[:] = l['filter_lambda2']
l['filter_logvar'] = list(a)
return trivial_embedding
def binary_entropy(p):
from scipy.special import xlogy
return - (xlogy(p, p) + xlogy(1. - p, 1. - p))
def get_layerwise_variance(e, normalized=False):
var = [np.exp(l['filter_logvar']) for l in e['layers']]
if normalized:
var = [v / np.linalg.norm(v) for v in var]
return var
def get_variance(e, normalized=False):
var = 1. / np.array(e.hessian)
if normalized:
lambda2 = 1. / np.array(e.scale)
var = var / lambda2
return var
def get_variances(*embeddings, normalized=False):
return [get_variance(e, normalized=normalized) for e in embeddings]
def get_hessian(e, normalized=False):
hess = np.array(e.hessian)
if normalized:
scale = np.array(e.scale)
hess = hess / scale
return hess
def get_hessians(*embeddings, normalized=False):
return [get_hessian(e, normalized=normalized) for e in embeddings]
def get_scaled_hessian(e0, e1):
h0, h1 = get_hessians(e0, e1, normalized=False)
# Create a mask where h0 or h1 is zero
mask0 = (h0 != 0)
mask1 = (h1 != 0)
# Create arrays for scaled hessians, initialized to 0
scaled_h0 = np.zeros_like(h0)
scaled_h1 = np.zeros_like(h1)
# Only compute where mask is True (i.e., where h0 and h1 are both non-zero)
scaled_h0[mask0] = h0[mask0] / (h0[mask0] + h1[mask0] + 1e-8)
scaled_h1[mask1] = h1[mask1] / (h0[mask1] + h1[mask1] + 1e-8)
return scaled_h0, scaled_h1
def get_full_kl(e0, e1):
var0, var1 = get_variance(e0), get_variance(e1)
kl0 = .5 * (var0 / var1 - 1 + np.log(var1) - np.log(var0))
kl1 = .5 * (var1 / var0 - 1 + np.log(var0) - np.log(var1))
return kl0, kl1
def layerwise_kl(e0, e1):
layers0, layers1 = get_layerwise_variance(e0), get_layerwise_variance(e1)
kl0 = []
for var0, var1 in zip(layers0, layers1):
kl0.append(np.sum(.5 * (var0 / var1 - 1 + np.log(var1) - np.log(var0))))
return kl0
def layerwise_cosine(e0, e1):
layers0, layers1 = get_layerwise_variance(e0, normalized=True), get_layerwise_variance(e1, normalized=True)
res = []
for var0, var1 in zip(layers0, layers1):
res.append(distance.cosine(var0, var1))
return res
@_register_distance
def kl(e0, e1):
var0, var1 = get_variance(e0), get_variance(e1)
kl0 = .5 * (var0 / var1 - 1 + np.log(var1) - np.log(var0))
kl1 = .5 * (var1 / var0 - 1 + np.log(var0) - np.log(var1))
return np.maximum(kl0, kl1).sum()
@_register_distance
def asymmetric_kl(e0, e1):
var0, var1 = get_variance(e0), get_variance(e1)
kl0 = .5 * (var0 / var1 - 1 + np.log(var1) - np.log(var0))
kl1 = .5 * (var1 / var0 - 1 + np.log(var0) - np.log(var1))
return kl0.sum()
@_register_distance
def jsd(e0, e1):
var0, var1 = get_variance(e0), get_variance(e1)
var = .5 * (var0 + var1)
kl0 = .5 * (var0 / var - 1 + np.log(var) - np.log(var0))
kl1 = .5 * (var1 / var - 1 + np.log(var) - np.log(var1))
return (.5 * (kl0 + kl1)).mean()
@_register_distance
def cosine(e0, e1, clip_value=1e10):
h1, h2 = get_scaled_hessian(e0, e1)
h1_clipped = np.clip(h1, -clip_value, clip_value)
h2_clipped = np.clip(h2, -clip_value, clip_value)
return distance.cosine(h1_clipped, h2_clipped)
@_register_distance
def normalized_cosine(e0, e1):
h1, h2 = get_variances(e0, e1, normalized=True)
return distance.cosine(h1, h2)
@_register_distance
def correlation(e0, e1):
v1, v2 = get_variances(e0, e1, normalized=False)
return distance.correlation(v1, v2)
@_register_distance
def entropy(e0, e1):
h1, h2 = get_scaled_hessian(e0, e1)
return np.log(2) - binary_entropy(h1).mean()
def get_normalized_embeddings(embeddings, normalization=None):
F = [1. / get_variance(e, normalized=False) if e is not None else None for e in embeddings]
zero_embedding = np.zeros_like([x for x in F if x is not None][0])
F = np.array([x if x is not None else zero_embedding for x in F])
# FIXME: compute variance using only valid embeddings
if normalization is None:
normalization = np.sqrt((F ** 2).mean(axis=0, keepdims=True))
F /= normalization
return F, normalization
def pdist(embeddings, distance='cosine'):
distance_fn = _DISTANCES[distance]
n = len(embeddings)
distance_matrix = np.zeros([n, n])
if distance != 'asymmetric_kl':
for (i, e1), (j, e2) in itertools.combinations(enumerate(embeddings), 2):
distance_matrix[i, j] = distance_fn(e1, e2)
distance_matrix[j, i] = distance_matrix[i, j]
else:
for (i, e1) in enumerate(embeddings):
for (j, e2) in enumerate(embeddings):
distance_matrix[i, j] = distance_fn(e1, e2)
return distance_matrix
def cdist(from_embeddings, to_embeddings, distance='cosine'):
distance_fn = _DISTANCES[distance]
distance_matrix = np.zeros([len(from_embeddings), len(to_embeddings)])
for (i, e1) in enumerate(from_embeddings):
for (j, e2) in enumerate(to_embeddings):
if e1 is None or e2 is None:
continue
distance_matrix[i, j] = distance_fn(e1, e2)
return distance_matrix
def plot_distance_matrix(embeddings, labels=None, distance='cosine'):
import seaborn as sns
from scipy.cluster.hierarchy import linkage
from scipy.spatial.distance import squareform
import pandas as pd
import matplotlib.pyplot as plt
distance_matrix = pdist(embeddings, distance=distance)
cond_distance_matrix = squareform(distance_matrix, checks=False)
linkage_matrix = linkage(cond_distance_matrix, method='complete', optimal_ordering=True)
if labels is not None:
distance_matrix = pd.DataFrame(distance_matrix, index=labels, columns=labels)
sns.clustermap(distance_matrix, row_linkage=linkage_matrix, col_linkage=linkage_matrix, cmap='viridis_r')
plt.show()