-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdipole_calibration_energy_calc.py
110 lines (89 loc) · 3.24 KB
/
dipole_calibration_energy_calc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import numpy as np
import matplotlib.pyplot as plt
def calc_rho(l_eff, angle_deg):
radians = np.radians(angle_deg)
rho = l_eff/(2.0*np.sin(radians/2.0))
return rho
def counts_to_current(counts):
#This function returns the current
#given the counts for the EEX dipole
#on the drive line.
cal_counts = np.array([1000.0,5000.0,10000.0,15000.0]) #These were measured
meas_volts = np.array([3.7,18.8,37.5,56.3]) #These were measured
ratio = 25.0/100.0 #ratio of current/volts
cal_current = meas_volts*ratio
poly = np.polyfit(cal_counts, cal_current, 1)
#print(poly)
current = poly[0]*counts + poly[1]
return current
def current_to_bfield(current):
#from gao's script to pull info from plot
#B in Tesla
bfield = (180.9708*current - 7.2053)*10**-4
return bfield
def counts_to_energy(rho, counts):
i = counts_to_current(counts)
#B in Tesla
bfield = current_to_bfield(i)
#Energy in MeV
momentum = ((bfield*rho)/3.335641)*10**3
total_e = np.sqrt(0.511**2+momentum**2)
print( 'momentum', momentum)
print( 'total energy', total_e, '\n')
return total_e
def current_to_energy(rho, current):
bfield = current_to_bfield(current)
#Energy in MeV
momentum = ((bfield*rho)/3.335641)*10**3
total_e = np.sqrt(0.511**2+momentum**2)
print( 'momentum', momentum)
print( 'total energy', total_e, '\n')
return total_e
angle = 20 #degrees
leff = 0.3154
rho = calc_rho(leff, angle)
print("rho", rho, '\n')
print('Measurements Pre-2018')
mean1 = np.mean([5826,5763]) #,5632 mediean 11/02
mean2 = np.mean([10054,9921,9968,9926])
#mean3 = np.mean([14688]) #bad measurement?
mean3 = np.mean([14072,14083])
mean3_highq = np.mean([13472,13792]) #13808 median 10/17])
gun = counts_to_energy(rho, 1472.0)#current_to_bfield(counts_to_current(1472.0))
gun_l1l2 = counts_to_energy(rho, mean1)#current_to_bfield(counts_to_current(mean1))
gun_l1l2_l3l5 = counts_to_energy(rho, mean2)#current_to_bfield(counts_to_current(mean2))
gun_l1_to_l6 = counts_to_energy(rho, mean3)#current_to_bfield(counts_to_current(mean3))
high_q_energy = counts_to_energy(rho, mean3_highq)
#e1 = total_energy(gun)
#e2 = total_energy(gun_l1l2)
#e3 = total_energy(gun_l1l2_l3l5)
#e4 = total_energy(gun_l1_to_l6)
#e5 = total_energy(high_q_energy)
#energy spread on 1nc 11-02
#lowenergy = counts_to_energy(rho, 5376)
#highenergy = counts_to_energy(rho, 5888)
#l = total_energy(lowenergy)
#h = total_energy(highenergy)
#momentum = ((gun*rho)/3.3356)*10**3
#total_e = total_energy(momentum)
#print 'direct energy', counts_to_energy_calc(rho, 1472.0)*10**3
#print('recorded current', current[1])
#plt.plot(counts, current)
#plt.show()
print('Measurements 2018 \n')
#current_to_energy(rho, 0.8)
print('gun, bad measurement')
counts_to_energy(rho, 1408)
print('Gun, L4, L6')
counts_to_energy(rho, 4770)
print('Gun, L4, L6, bad measurement - uncentered')
counts_to_energy(rho, 4736)
print('Gun, L3, L5, bad measurment - uncentered')
counts_to_energy(rho, 5184)
print('Gun, L1, L2, bad measurement - uncentered')
counts_to_energy(rho, 5408)
print('Gun L1-L6, full energy')
print('max energy:')
counts_to_energy(rho, 13503)
print('min energy:')
counts_to_energy(rho, 12768)