-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstat_plots.py
218 lines (183 loc) · 7.71 KB
/
stat_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# -*- coding: utf-8 -*-
"""
Created on Thu Feb 11 14:16:13 2016
@author: nneveu
"""
import numpy as np
import matplotlib.pyplot as plt
import sys
import myplots as mplt
run = 'dipole_test'
#opalfilebase = 'dipoleKickerBaselineK0-0pt012'
#file1 = mplt.load('optLinac_weight3.stat')
#file1 = mplt.load('optLinac_weight5_linacon.stat')
#file2 = mplt.load('optLinac_weight5_linacon.stat')
file1 = mplt.load('./data/optLinac3Dgun3DLinac.stat')
file2 = mplt.load('./data/optLinac3Dgun3DLinac.stat')
file1_label = 'weight 3'#'Linac on'#
file2_label = 'weight 5'#'weight 5'
for i in np.arange(6, 8, 1):
if i ==1:
#Energy Plot
plt.figure(1)
#plt.show(block=False)
#plt.axis((0, 20, 0, 70))
plt.title( r'Energy Vs. Z' , size=18)
plt.xlabel(r'z [m]', size=18)
plt.ylabel(r'$\gamma mc^2$ [MeV]', size=18)
plt.plot(file1['z'], file1['E'], 'b-', label = file1_label)
plt.yticks(np.arange(0, 70, 5.0))
plt.grid('on')
plt.plot(file2['z'], file2['E'], 'g--', label = file2_label)
plottitle = 'Energy_' +run +'.pdf'
elif i ==2:
#XRMS Plot
plt.figure(2)
#plt.show(block=False)
#plt.axis((0, 20, 0, 45))
plt.title( r'Beam Size Vs. Z' , size=18)
plt.xlabel(r'z [m]', size=18)
plt.ylabel(r'$3\sigma$ [mm]', size=18)
plt.plot(file1['z'], 3*file1['xrms'], 'b-', label = file1_label + '- 3$\sigma_{x}$ ')
plt.plot(file1['z'], 3*file1['yrms'], 'b--', label = file1_label + '- 3$\sigma_y$')
plt.plot(file2['z'], 3*file2['xrms'], 'g-', label = file2_label + '- 3$\sigma_{x}$ ')
plt.plot(file2['z'], 3*file2['yrms'], 'g--', label = file2_label + '- 3$\sigma_y$')
#==============================================================================
# plt.plot(dataoff['z'], dataoff['xrms'], 'b-', label = 'M260')
# plt.plot(dataon['z'], dataon['xrms'], 'g-', label='M265')
#==============================================================================
plottitle = 'XRMS3sigma_' +run +'.pdf'
elif i ==3:
#XEMIT Plot
plt.figure(3)
#plt.show(block=False)
#plt.axis((0.0, 20.0, 0.0, 150))
plt.title( r'Emittance Vs. Z' , size=18)
plt.xlabel(r'z [m]', size=18)
plt.ylabel(r'$\epsilon_{nx}$ [mm-mrad]', size=18)
plt.plot(file1['z'], file1['xemit'], 'b-', label = file1_label)
#plt.plot(file2['z'], file2['xemit'], 'g-', label = file2_label)
#==============================================================================
# plt.plot(dataoff['z'], dataoff['xemit'], 'b-', label = 'M260')
# plt.plot(dataon['z'], dataon['xemit'], 'g-', label='M265')
#==============================================================================
plottitle = 'Emittance_'+run+'.pdf'
elif i ==4:
#Bunch Length Plot
plt.figure(4)
#plt.show(block=False)
#plt.axis((0.0, 20.0, 0, 3))
plt.title( r'Bunch Length' , size=18)
plt.xlabel(r'z [m]', size=18)
plt.ylabel(r'$\sigma_{z}$ [mm]', size=18)
plt.plot(file1['z'], file1['zrms'], 'b-', label = file1_label)
plt.plot(file2['z'], file2['zrms'], 'g-', label = file2_label)
#==============================================================================
# plt.plot(dataoff['z'], dataoff['xemit'], 'b-', label = 'M260')
# plt.plot(dataon['z'], dataon['xemit'], 'g-', label='M265')
#==============================================================================
plottitle = 'BunchLength_'+run+'.pdf'
elif i ==5:
#Energy Spread
plt.figure(5)
#plt.show(block=False)
#plt.axis((0.0, 20.0, 0, 0.06))
plt.title( r'Energy Spread' , size=18)
plt.xlabel(r'z [m]', size=18)
plt.ylabel(r'dE/E [mm]', size=18)
plt.plot(file1['z'], file1['dE']/file1['E'], 'b-', label = file1_label)
plt.plot(file2['z'], file2['dE']/file2['E'], 'g-', label = file2_label)
plottitle = 'energySpread_'+run+'.pdf'
elif i ==6:
#Bz on axis
plt.figure(6)
#plt.show(block=False)
#plt.axis((0.0, 15.0, -70,10))
plt.title( r'Magnetic Field' , size=18)
plt.xlabel(r'z [m]', size=18)
plt.ylabel(r'Bz [T]', size=18)
#plt.yticks(np.arange( -70,0, 5.0))
plt.grid('on')
plt.plot(file1['z'], file1['Bz'], 'b-', label = file1_label)
#plt.plot(file2['z'], file2['zrms'], 'g-', label = file2_label)
plottitle = 'Bz_'+run+'.pdf'
elif i ==7:
#By on axis
plt.figure(7)
#plt.show(block=False)
#plt.axis((0.0, 15.0, -70,10))
plt.title( r'Magnetic Field' , size=18)
plt.xlabel(r'z [m]', size=18)
plt.ylabel(r'By [T]', size=18)
#plt.yticks(np.arange( -70,0, 5.0))
plt.grid('on')
plt.plot(file1['z'], file1['By'], 'b-', label = file1_label)
#plt.plot(file2['z'], file2['zrms'], 'g-', label = file2_label)
plottitle = 'By_'+run+'.pdf'
elif i ==8:
#Ez on axis
plt.figure(8)
#plt.show(block=False)
#plt.axis((0.0, 15.0, -70,10))
plt.title( r'Electric Field' , size=18)
plt.xlabel(r'z [m]', size=18)
plt.ylabel(r'MV/m', size=18)
plt.yticks(np.arange( -70,0, 5.0))
plt.grid('on')
plt.plot(file1['z'], file1['Ez'], 'b-', label = file1_label)
#plt.plot(file2['z'], file2['zrms'], 'g-', label = file2_label)
plottitle = 'Ez_'+run+'.pdf'
#==============================================================================
# for j in np.arange(2, 2, 1):
#
# #s = str(j)
# #s = s.replace(".", "pt")
# #myopalfile = opalfilebase + '.stat'
# #myopalfile = opalfilebase + s + '.stat'
# #data = mplt.load(myopalfile, 56)
#
#==============================================================================
plt.legend(loc='best')
plt.savefig(plottitle, bbox_inches='tight')
#==============================================================================
# plt.plot((0.5, 11.0), (50, 50), 'k--', label='50mm = Linac Radius')
# plt.plot((11.0, 11.0), (25, 50), 'k--')
# plt.plot((11.0, 16.0), (25, 25), 'k--', label='25mm = Drift Radius')
# #plt.plot((16.0, 30.0), (7.5, 7.5), 'k--', label=r'7.5mm = PETS Radius')
# plt.plot((16.0, 16.0), (15.0, 25), 'b--', label='Kicker Entrance')
# plt.plot((16.0, 23.5), (15.0, 15.0), 'k--', label=r'15mm = $\frac{1}{2}$ Kicker Gap')
# plt.plot((23.5, 23.5), (0, 15.0), 'r--', label='7.5m Drift')
# #plt.plot((16.0, 16.6), (13.0, 13.0), 'k--', label=r'60cm = Kicker Length')
# #ax.fill_between(xrms, .4, .10, facecolor='blue', alpha=0.5)
#==============================================================================
#==============================================================================
# Loops and user defined plotting
# #for i in np.arange(1.1, 1.35, 0.05):
# for i in np.arange(1.98, 1.985, 0.01):
#
# #Calculating solenoid strength in current
# #Mn = 440*(i/1.973966)
# #Mn = 440*(i/0.625521474)
# #M = '%.0f' % Mn
# """
# #Note, the 1.f gives one decimal place of i
# num = str(i).replace('.', 'pt')
# if len(num)==4:
# q = num
# elif len(num)<6:
# q = num
# else:
# q = num
# """
# data = mplt.load(myfile, 61)
#
# mplt.xemit(data,myfile)
# mplt.yemit(data, myfile)
# mplt.energy(data, myfile)
# mplt.xmean(data, myfile)
# mplt.xrms(data,myfile)
# mplt.ymean(data, myfile)
# mplt.by(data,myfile)
# mplt.bz(data, myfile)
# mplt.bx(data, myfile)
#==============================================================================