-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgebras.tex
336 lines (272 loc) · 11.8 KB
/
algebras.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
\documentclass[letterpaper]{article}
\DeclareSymbolFont{AMSb}{U}{msb}{m}{n}
\DeclareMathAlphabet{\mathbbm}{U}{bbm}{m}{n}
\title{Functors, Fixed Points, and Algebras; Oh My!}
\usepackage{amsmath,amssymb,amsthm,latexsym}
\usepackage{fancyhdr}
\usepackage[tiny,center,compact,sc]{titlesec}
\usepackage[cm]{fullpage}
\usepackage{pstricks}
\usepackage{graphicx}
\usepackage{verbatim}
\usepackage{bm}
\usepackage{ifthen}
\usepackage{epsfig}
\usepackage{tikz}
\usetikzlibrary{arrows,calc,matrix,positioning,scopes}
\usepackage{textcomp}
\usepackage{url}
\usepackage{multirow}
\usepackage{hyperref}
\usepackage{listings}
\lstloadlanguages{Haskell}
\usepackage{breakurl}
\renewcommand{\baselinestretch}{0.9}
%\newtheorem{thm}{Thm}[section]
%\newtheorem{dfn}{Def}[section]
\setlength{\parindent}{0pt}
\setlength{\parskip}{3pt}
%Scalable bracket-like
\newcommand{\paren}[1]{\left({#1}\right)}
\newcommand{\brak}[1]{\left[{#1}\right]}
\newcommand{\abs}[1]{\left\lvert{#1}\right\rvert}
\newcommand{\ang}[1]{\left\langle{#1}\right\rangle}
\newcommand{\set}[1]{\left\{#1\right\}}
%Mathematics
\newcommand{\condexp}[1]{\ifthenelse{\equal{#1}{false}}{}{^{#1}}}
\newcommand{\dd}[3][false]{\frac{d\condexp{#1}{#2}}{d{#3}\condexp{#1}}}
\newcommand{\pd}[3][false]{\frac{\partial\condexp{#1}{#2}}{\partial{#3}\condexp{#1}}}
\newcommand{\ifrac}[2]{{#1}/{#2}}
%Quantum Mechanics
\newcommand{\ket}[1]{\left\lvert{#1}\right\rangle}
\newcommand{\bra}[1]{\left\langle{#1}\right\rvert}
\newcommand{\braket}[2]{\left\langle{#1}\middle\vert{#2}\right\rangle}
\newcommand{\Braket}[3]{\left\langle{#1}\middle\vert{#2}\middle\vert{#3}\right\rangle}
\newcommand{\dyad}[2]{\left\lvert{#1}\middle\rangle\middle\langle{#2}\right\rvert}
\DeclareMathOperator{\mm}{\mid\mid}
\newcommand{\defn}[1]{{\bf #1}}
\begin{document}
\maketitle
For a given endofunctor $F : \mathcal{C} \to \mathcal{C}$, let
%
\begin{itemize}
%
\item $(\mu F, in)$ denote its initial algebra ($in : F(\mu F) \to \mu F$)
A {\em catamorphism} $h$ is the unique arrow from an initial algebra to
any other $a$; it must be the solution to the equation $h \circ in = a
\circ F h$.
%
\item $(\nu F, out)$ denote its terminal coalgebra ($out : \nu F \to F(\nu
F)$) An {\em anamorphism} of a coalgebra $c$ is the unique solution to $c
\circ h = F h \circ out$.
%
\end{itemize}
\section{Special Fixed Points}
\subsection{Carrier of Initial Algebra Implies Fixed Point}
Assume that $(\mu F, in)$ exists; then $(F(\mu F), F(in))$ is also an
$F$-algebra (because $F(in) : F(F(\mu F)) \to F(\mu F)$) and the following
diagram exists in $\mathcal{C}$:
%
\begin{center}\begin{tikzpicture}
\matrix (m) [matrix of math nodes, row sep=3em, column sep=6em]
%
{ F(\mu F) & F(F(\mu F)) & F(\mu F) \\ \mu F & F(\mu F) & \mu F \\ };
\path [->] (m-1-1) edge node [above] {$F(\phi_F(F(in))$} (m-1-2) ;
\path [->] (m-1-2) edge node [above] {$F(in)$} (m-1-3) ;
\path [->] (m-1-1) edge node [left] {$in$} (m-2-1) ;
\path [->] (m-1-2) edge node [left] {$F(in)$} (m-2-2) ;
\path [->] (m-2-1) edge node [below] {$\phi_F(F(in))$} (m-2-2) ;
\path [->] (m-2-2) edge node [below] {$in$} (m-2-3) ;
\path [->] (m-1-3) edge node [right] {$in$} (m-2-3) ;
\node at ($(m-1-1)!0.5!(m-2-2)$) {$\circ$} ;
\node at ($(m-1-2)!0.5!(m-2-3)$) {$\circ$} ;
\end{tikzpicture}\end{center}
%
where $\phi_F(F(in))$ is the catamorphism of $F(in)$: the unique arrow
guaranteed to exist by initiality of $(\mu F, in)$ such that the left square
commutes. The right square trivially commutes and is rendered only for
convenience. (Note that $\phi_F(in) = id$ by initiality!)
We see that $in \circ \phi_F(F(in))$ (the bottom two arrows of the diagram)
form an algebra homomorphism from $(\mu F, in)$ to itself. By initiality,
this must be the identity: $in \circ \phi_f(F(in)) = 1_{\mu F}$.
The top-left and middle edges compose to give $F(in) \circ F(\phi_F(F(in))$,
which is just $F(in \circ \phi_F(F(in)))$ (because functors distribute over
compostion), which we know to be $F(1_{\mu F})$, which is $1_{F(\mu F)}$
(because functors send identity arrows to identity arrows). By commutation
of the left square, the left and bottom-left arrows' composition,
$\phi_F(F(in)) \circ in = 1_{F(\mu F)}$.
All told, then, $in$ is an isomorphism with inverse $in^{-1} = \phi_F(F(in))$.
That is, $\mu F$ satisfies the equation $\mu F \simeq F(\mu F)$, so $\mu F$
is a fixed point of $F$. (This is apparently known as ``Lambek's Lemma''.)
\subsection{Carrier of Final Coalgebra Implies Fixed Point}
The above argument dualizes in a straightforward way.
%
\begin{center}\begin{tikzpicture}
\matrix (m) [matrix of math nodes, row sep=3em, column sep=6em]
%
{ F(\nu F) & F(F(\nu F)) & F(\nu F) \\ \nu F & F(\nu F) & \nu F \\ };
\path [<-] (m-1-1) edge node [above] {$F(\psi_F(F(out))$} (m-1-2) ;
\path [<-] (m-1-2) edge node [above] {$F(out)$} (m-1-3) ;
\path [<-] (m-1-1) edge node [left] {$out$} (m-2-1) ;
\path [<-] (m-1-2) edge node [left] {$F(out)$} (m-2-2) ;
\path [<-] (m-2-1) edge node [below] {$\psi_F(F(out))$} (m-2-2) ;
\path [<-] (m-2-2) edge node [below] {$out$} (m-2-3) ;
\path [<-] (m-1-3) edge node [right] {$out$} (m-2-3) ;
\node at ($(m-1-1)!0.5!(m-2-2)$) {$\circ$} ;
\node at ($(m-1-2)!0.5!(m-2-3)$) {$\circ$} ;
\end{tikzpicture}\end{center}
%
Where $\psi_F(F(out))$ is the anamorphism guaranteed by terminality of $(\nu
F, out)$. $\psi_F(F(out)) \circ out = 1_{\nu F}$ by terminality (and
$\psi_F(out) = id$; also note that dualization has swapped which half of the
isomorphism follows immediately!). In the other direction, $out \circ
\psi_F(F(out)) = F(\psi_F(F(out))) \circ F(out) = F(\psi_F(F(out)) \circ
out) = F(1_{\nu_F}) = 1_{F(\nu_F)}$.
Thus $out$ is an isomorphism with inverse $out^{-1} = \psi_F(F(out))$ and
$\nu_F$ satisfies $\nu_F \simeq F(\nu F)$, making it another fixed point.
\subsection{Other Fixed Points}
We know that {\em any} fixed point of $F$ in fact, call it $\theta F$, has
the property of being isomorphic to $F(\theta F)$.
\subsubsection{An Example or Two of Fixed Points}
For the purpose of this section, consider the lovely binary tree functor on
the category $\mathbf{Set}$, which has (countable) (co)products, initial
object $\emptyset$ and terminal object $1$; i.e., $T x = 1 + x \times x$.
Then,
%
\begin{itemize}
%
\item One fixed point, in fact the smallest, of $F$ is the collection of
{\em finite} binary trees with $1$ at its leaves. This is the usual thing
obtained by inflation.
%
\item The largest is binary trees with {\em countable} (including finite)
paths (and $1$ leaves). This cannot be defined by inflation but is
clearly closed under $T$: taking the product of two such such objects is
clearly another such object.
%
\item Another intermediate structure $\theta T$ is less obvious: trees
which may descend {\em left} countably many times but {\em right} only
finitely many times. Again, we cannot grow this by inflation but can
argue that the product of any two such objects is, indeed, another such
object.
%
\end{itemize}
%
Note that, indeed, as we might expect, $\mu T \subsetneq \theta T \subsetneq
\nu T$. The ``other $\theta T$'' (which swaps left and right) is also
between $\mu T$ and $\nu T$, but is not comparable to $\theta T$: fixed
points form a partial order with a single bottom and single top.
Consider a different functor, the diagonal product functor $\Delta x = x
\times x$, which is like $T$ except that it omits the ``$1 +$'' part. In
this case,
%
\begin{itemize}
%
\item $\mu \Delta = \emptyset$. There's nothing to force us away and
$\Delta \emptyset = \emptyset \times \emptyset \simeq \emptyset$.
%
\item The terminal object $1$ is $\nu \Delta$: $\Delta 1 = 1 \times 1
\simeq 1$. For ease of understanding, this is the singleton set whose
element represents a tree that is its own root's left and right child.
%
\item There are no other fixed points of $\Delta$. (Stated without
proof!)
%
\end{itemize}
%
As before, $\mu \Delta \subseteq \nu \Delta$.
\subsection{Induced Duals}
Because of the two isomorphisms above, we know that $(\mu F, \phi_F(F(in))) =
(\mu F, in^{-1})$ exists and is a coalgebra; similarly, $(\nu F,
\psi_F(F(out))) = (\nu F, out^{-1})$ exists and is an algebra. That is, we
have these diagrams (on the left are $F$-algebras and on the right are
$F$-coalgebras; both diagrams take place in $\mathcal{C}$):
%
\begin{center}\begin{tikzpicture}
\matrix (m) [matrix of math nodes, row sep=3em, column sep=6em]
%
{ F(\mu F) & F(\nu F) & & F(\mu F) & F(\nu F) \\
\mu F & \nu F & & \mu F & \nu F \\ } ;
\path [->] (m-1-1) edge node [left] {$in$} (m-2-1) ;
\path [->] (m-1-2) edge node [right] {$out^{-1}$} (m-2-2) ;
\path [->] (m-2-1) edge node [below] {$\phi_F(out^{-1})$} (m-2-2) ;
\path [->] (m-1-1) edge node [above] {$F(\phi_F(out^{-1}))$} (m-1-2) ;
\node at ($(m-1-1)!0.5!(m-2-2)$) {$\circ$} ;
\path [->] (m-2-4) edge node [left] {$in^{-1}$} (m-1-4) ;
\path [->] (m-2-5) edge node [right] {$out$} (m-1-5) ;
\path [->] (m-2-4) edge node [below] {$\psi_F(in^{-1})$} (m-2-5) ;
\path [->] (m-1-4) edge node [above] {$F(\psi_F(in^{-1}))$} (m-1-5) ;
\node at ($(m-1-4)!0.5!(m-2-5)$) {$\circ$} ;
\end{tikzpicture}\end{center}
%
where, again, $\phi_F(out^{-1}) = \phi_F(\psi_F(F(out)))$ is the unique arrow that
makes the diagram commute, guaranteed to exist by initiality of $(\mu F,
in)$ and, dually, $\psi_F(\phi_F(F(in))) = \psi_F(in^{-1})$ by terminality of
$(\nu F, out)$. Note that this existence argument does {\em not} make these
arrows equal.
\subsubsection{Example Induced Coalegbra}
For this section, we're going to write fuctions in Haskell, though only for
its syntax. Please read all definitions as strict and total!
Consider the List (of $A$s) $\mathbf{Set}$ endo-functor $ListF~x = 1 + A \times
x$. Let's give it a Haskell rendering, choosing $A = \text{Int}$ just to
dodge polymorphism:
%
\begin{lstlisting}[language=Haskell]
data ListF rec = FNil | FCons Int rec
\end{lstlisting}
%
$\mu L$ is (isomorphic to) the traditional \textsc{lisp}-y lists whose
elements are of type $A$:
%
\begin{lstlisting}[language=Haskell]
data MuListF = MLNil | MLCons Int MuListF
\end{lstlisting}
%
$in : L (\mu L) \to \mu L$ sends $1$ to the empty
list and $a \times l$ to the list whose head is $a$ and tail is $l$:
%
\begin{lstlisting}[language=Haskell]
_in :: ListF MuListF -> MuListF
_in FNil = MLNil
_in (FCons i l) = MLCons i l
\end{lstlisting}
%
Moreover, we know (stated without proof) that $L$'s catamorphism is an
uncurried foldr: looking at the type, we see $\phi_L : \forall_X . (L X \to
X) \to (\mu L \to X)$. (Expanding things a bit, this is $\forall_X . ((1 +
A \times X) \to X) \to \mu L \to X$ which is iso to $\forall_X . (A \to X
\to X) \to X \to \mu L \to X$.) In particular, it is
%
\begin{lstlisting}[language=Haskell]
phiL :: forall a . (ListF a -> a) -> MuListF -> a
phiL f MLNil = f (FNil)
phiL f (MLCons i l) = f (FCons i (phiL f l))
\end{lstlisting}
%
As required, $\phi_L(in) = id$:
%
\begin{lstlisting}[language=Haskell]
phiL _in MLNil = _in FNil = MLNil
phiL _in (MLCons i l)
= _in (FCons i (phiL f l))
= _in (FCons i l) -- induction
= MLCons i l
\end{lstlisting}
%
$in^{-1} = \phi_L(L(in))$ instantiates $\phi_L$ with $X = L (\mu L)$. The
function $L(in) : L (L \mu L) \to L \mu L$ then is just \texttt{fmap in}.
So $in^{-1} = \phi_L(L(in)) : \mu L \to L \mu L$ is
\begin{lstlisting}[language=Haskell]
phiL (fmap _in) MLNil = (fmap _in) FNil = FNil
phiL (fmap _in) (MLCons i l)
= (fmap _in) (FCons i (phiL (fmap _in) l))
= FCons i (_in (phiL (fmap _in) l))
= FCons i l
\end{lstlisting}
\subsubsection{Example Induced Algebra}
$\nu L$ is the set of possibly-infinite lists: it contains all of $\mu L$ as
well as the non-terminating lists. $out$ sends nil to the left $1$ and a
list with cons cell top to the right product of its head and tail. So what
is $\psi_L$? We know from looking at the diagram that it must have type
$\forall_X . (X \to L X) \to X \to \nu L$.
\end{document}