-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_calibration.py
95 lines (78 loc) · 3.64 KB
/
evaluate_calibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import argparse, os, copy
import pyro
import numpy as np
import pandas as pd
import scanpy as sc
import matplotlib.pyplot as plt
from evaluation_metrics.evaluation_V import logit_normal_to_mean_and_var
from inferelator.postprocessing.model_metrics import RankSummingMetric, RankSummaryPR
RankSummingMetricCopy = copy.deepcopy(RankSummingMetric)
@staticmethod
def compute_combined_confidences(rankable_data):
"""
Same as in original module's method except use nanmin to calculate min_element
"""
# Create an 0s dataframe shaped to the data to be ranked
combine_conf = pd.DataFrame(np.zeros(rankable_data[0].shape),
index=rankable_data[0].index,
columns=rankable_data[0].columns)
for replicate in rankable_data:
# Flatten and rank based on the beta error reductions
ranked_replicate = np.reshape(pd.DataFrame(replicate.values.flatten()).rank().values, replicate.shape)
# Sum the rankings for each bootstrap
combine_conf += ranked_replicate
# Convert rankings to confidence values
min_element = np.nanmin(combine_conf.values.flatten())
combine_conf = (combine_conf - min_element) / (len(rankable_data) * combine_conf.size - min_element)
return combine_conf
RankSummingMetricCopy.compute_combined_confidences = compute_combined_confidences
def get_calibration_auprc(to_eval, gold_standard, filter_method='overlap'):
metrics = RankSummingMetricCopy([to_eval], gold_standard, filter_method)
data = RankSummaryPR.calculate_precision_recall(metrics.filtered_data)
auprc = RankSummaryPR.calculate_aupr(data)
return auprc
def plot_fig(auprcs, fig_output_path):
plt.plot(np.arange(1, len(auprcs)+1) * 100/len(auprcs), auprcs)
plt.xlim(0, 100)
plt.grid()
plt.xlabel("Percentile Cutoff", fontsize=18)
plt.ylabel("AUPRC", fontsize=18)
plt.xticks(fontsize=16)
plt.yticks(fontsize=16)
plt.tight_layout()
plt.savefig(fig_output_path)
def evaluate_calibration(args):
gold_standard = sc.read_csv(args.gold_standard_path, delimiter="\t", first_column_names=True).to_df()
V_obs = pd.read_csv(os.path.join(args.exp_dir, "V_obs_names.csv"), sep=',', header=None)
V_vars = pd.read_csv(os.path.join(args.exp_dir, "V_var_names.csv"), sep=',', header=None)
pyro.get_param_store().clear()
pyro.get_param_store().load(os.path.join(args.exp_dir, "best_iter.params"), map_location="cpu")
A_means, A_vars = logit_normal_to_mean_and_var(
pyro.get_param_store()['A_means'].detach(),
pyro.get_param_store()['A_stds'].detach(),
args.num_sampling_iters
)
pyro.get_param_store().clear()
percentile_values = np.percentile(A_vars, np.arange(1, 11)*10)
auprcs = []
for i in range(len(percentile_values)):
A_means_copy = copy.deepcopy(A_means)
A_means_copy[A_vars > percentile_values[i]] = np.nan
to_eval = pd.DataFrame(
data=A_means_copy.cpu().numpy(),
columns=V_vars[0],
index=V_obs[0]
)
auprcs.append(get_calibration_auprc(to_eval, gold_standard, filter_method='overlap'))
plot_fig(auprcs, os.path.join(args.output_dir, "calibration_plot.pdf"))
np.savetxt(os.path.join(args.output_dir, "calibration_values.txt"), auprcs)
parser = argparse.ArgumentParser()
parser.add_argument("--exp-dir")
parser.add_argument("--gold-standard-path")
parser.add_argument("--num-sampling-iters", type=int, default=500)
parser.add_argument("--output-dir")
if __name__ == "__main__":
args = parser.parse_args()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
evaluate_calibration(args)