forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chemical_balance_lp.py
92 lines (69 loc) · 2.99 KB
/
chemical_balance_lp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Copyright 2010-2018 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# We are trying to group items in equal sized groups.
# Each item has a color and a value. We want the sum of values of each group to
# be as close to the average as possible.
# Furthermore, if one color is an a group, at least k items with this color must
# be in that group.
from __future__ import print_function
from __future__ import division
from ortools.linear_solver import pywraplp
import math
# Data
max_quantities = [["N_Total", 1944], ["P2O5", 1166.4], ["K2O", 1822.5],
["CaO", 1458], ["MgO", 486], ["Fe", 9.7], ["B", 2.4]]
chemical_set = [["A", 0, 0, 510, 540, 0, 0, 0], ["B", 110, 0, 0, 0, 160, 0, 0],
["C", 61, 149, 384, 0, 30, 1,
0.2], ["D", 148, 70, 245, 0, 15, 1,
0.2], ["E", 160, 158, 161, 0, 10, 1, 0.2]]
num_products = len(max_quantities)
all_products = range(num_products)
num_sets = len(chemical_set)
all_sets = range(num_sets)
# Model
max_set = [
min(max_quantities[q][1] / chemical_set[s][q + 1] for q in all_products
if chemical_set[s][q + 1] != 0.0) for s in all_sets
]
solver = pywraplp.Solver("chemical_set_lp",
pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)
set_vars = [solver.NumVar(0, max_set[s], "set_%i" % s) for s in all_sets]
epsilon = solver.NumVar(0, 1000, "epsilon")
for p in all_products:
solver.Add(
sum(chemical_set[s][p + 1] * set_vars[s]
for s in all_sets) <= max_quantities[p][1])
solver.Add(
sum(chemical_set[s][p + 1] * set_vars[s]
for s in all_sets) >= max_quantities[p][1] - epsilon)
solver.Minimize(epsilon)
print(("Number of variables = %d" % solver.NumVariables()))
print(("Number of constraints = %d" % solver.NumConstraints()))
result_status = solver.Solve()
# The problem has an optimal solution.
assert result_status == pywraplp.Solver.OPTIMAL
assert solver.VerifySolution(1e-7, True)
print(("Problem solved in %f milliseconds" % solver.wall_time()))
# The objective value of the solution.
print(("Optimal objective value = %f" % solver.Objective().Value()))
for s in all_sets:
print(
" %s = %f" % (chemical_set[s][0], set_vars[s].solution_value()),
end=" ")
print()
for p in all_products:
name = max_quantities[p][0]
max_quantity = max_quantities[p][1]
quantity = sum(
set_vars[s].solution_value() * chemical_set[s][p + 1] for s in all_sets)
print("%s: %f out of %f" % (name, quantity, max_quantity))