You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am getting for following timeout message on invoking a job. Any Help will be appreciated
{
"status": "ERROR",
"result": {
"message": "Ask timed out on [Actor[akka://JobServer/user/context-supervisor/xxxx#-1022892173]] after [20000 ms]",
"errorClass": "akka.pattern.AskTimeoutException",
"stack": ["akka.pattern.PromiseActorRef$$anonfun$1.apply$mcV$sp(AskSupport.scala:334)", "akka.actor.Scheduler$$anon$7.run(Scheduler.scala:117)", "scala.concurrent.Future$InternalCallbackExecutor$.scala$concurrent$Future$InternalCallbackExecutor$$unbatchedExecute(Future.scala:694)", "scala.concurrent.Future$InternalCallbackExecutor$.execute(Future.scala:691)", "akka.actor.LightArrayRevolverScheduler$TaskHolder.executeTask(Scheduler.scala:467)", "akka.actor.LightArrayRevolverScheduler$$anon$8.executeBucket$1(Scheduler.scala:419)", "akka.actor.LightArrayRevolverScheduler$$anon$8.nextTick(Scheduler.scala:423)", "akka.actor.LightArrayRevolverScheduler$$anon$8.run(Scheduler.scala:375)", "java.lang.Thread.run(Thread.java:745)"]
}
I am using the velvia/spark-jobserver:0.6.2.mesos-0.28.1.spark-1.6.1 and at the bottom I have added the jobserver.conf.
Below is the stack strace.
ERROR .jobserver.JobManagerActor [] [] - About to restart actor due to exception:
java.util.concurrent.TimeoutException: Futures timed out after [3 seconds]
at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:107)
at akka.dispatch.MonitorableThreadFactory$AkkaForkJoinWorkerThread$$anon$3.block(ThreadPoolBuilder.scala:169)
at scala.concurrent.forkjoin.ForkJoinPool.managedBlock(ForkJoinPool.java:3640)
at akka.dispatch.MonitorableThreadFactory$AkkaForkJoinWorkerThread.blockOn(ThreadPoolBuilder.scala:167)
at scala.concurrent.Await$.result(package.scala:107)
at spark.jobserver.JobManagerActor$$anonfun$startJobInternal$1.apply$mcV$sp(JobManagerActor.scala:200)
at scala.util.control.Breaks.breakable(Breaks.scala:37)
at spark.jobserver.JobManagerActor.startJobInternal(JobManagerActor.scala:192)
at spark.jobserver.JobManagerActor$$anonfun$wrappedReceive$1.applyOrElse(JobManagerActor.scala:144)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25)
at ooyala.common.akka.ActorStack$$anonfun$receive$1.applyOrElse(ActorStack.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25)
at ooyala.common.akka.Slf4jLogging$$anonfun$receive$1$$anonfun$applyOrElse$1.apply$mcV$sp(Slf4jLogging.scala:26)
at ooyala.common.akka.Slf4jLogging$class.ooyala$common$akka$Slf4jLogging$$withAkkaSourceLogging(Slf4jLogging.scala:35)
at ooyala.common.akka.Slf4jLogging$$anonfun$receive$1.applyOrElse(Slf4jLogging.scala:25)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25)
at ooyala.common.akka.ActorMetrics$$anonfun$receive$1.applyOrElse(ActorMetrics.scala:24)
at akka.actor.Actor$class.aroundReceive(Actor.scala:467)
at ooyala.common.akka.InstrumentedActor.aroundReceive(InstrumentedActor.scala:8)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516)
at akka.actor.ActorCell.invoke(ActorCell.scala:487)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:238)
at akka.dispatch.Mailbox.run(Mailbox.scala:220)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:397)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
Jobserver.conf
Template for Spark Job Server Docker config
You can easily override the spark master through SPARK_MASTER env variable
Spark Cluster / Job Server configuration
spark {
master = "local[4]"
master = ${?SPARK_MASTER}
Default # of CPUs for jobs to use for Spark standalone cluster
job-number-cpus = 4
jobserver {
port = 8090
jobdao = spark.jobserver.io.JobSqlDAO
context-per-jvm = true
context-init-timeout = 90s
sqldao {
# Directory where default H2 driver stores its data. Only needed for H2.
rootdir = /database
# Full JDBC URL / init string. Sorry, needs to match above.
# Substitutions may be used to launch job-server, but leave it out here in the default or tests won't pass
jdbc.url = "jdbc:h2:file:/database/h2-db"
}
}
predefined Spark contexts
contexts {
my-low-latency-context {
num-cpu-cores = 1 # Number of cores to allocate. Required.
memory-per-node = 512m # Executor memory per node, -Xmx style eg 512m, 1G, etc.
}
# define additional contexts here
}
universal context configuration. These settings can be overridden, see README.md
context-settings {
num-cpu-cores = 2 # Number of cores to allocate. Required.
memory-per-node = 1024m # Executor memory per node, -Xmx style eg 512m, #1G, etc.
# in case spark distribution should be accessed from HDFS (as opposed to being installed on every mesos slave)
# spark.executor.uri = "hdfs://namenode:8020/apps/spark/spark.tgz"
# uris of jars to be loaded into the classpath for this context. Uris is a string list, or a string separated by commas ','
# dependent-jar-uris = ["file:///some/path/present/in/each/mesos/slave/somepackage.jar"]
# If you wish to pass any settings directly to the sparkConf as-is, add them here in passthrough,
# such as hadoop connection settings that don't use the "spark." prefix
passthrough {
#es.nodes = "192.1.1.1"
}
}
This needs to match SPARK_HOME for cluster SparkContexts to be created successfully
home = "/usr/local/spark"
}
akka {
remote.netty.tcp {
# This controls the maximum message size, including job results, that can be sent
maximum-frame-size = 30 MiB
}
}
spray.can.server {
uncomment the next line for making this an HTTPS example
ssl-encryption = on
idle-timeout = 210 s
request-timeout = 200 s
pipelining-limit = 2 # for maximum performance (prevents StopReading / ResumeReading messages to the IOBridge)
Needed for HTTP/1.0 requests with missing Host headers
I am getting for following timeout message on invoking a job. Any Help will be appreciated
{
"status": "ERROR",
"result": {
"message": "Ask timed out on [Actor[akka://JobServer/user/context-supervisor/xxxx#-1022892173]] after [20000 ms]",
"errorClass": "akka.pattern.AskTimeoutException",
"stack": ["akka.pattern.PromiseActorRef$$anonfun$1.apply$mcV$sp(AskSupport.scala:334)", "akka.actor.Scheduler$$anon$7.run(Scheduler.scala:117)", "scala.concurrent.Future$InternalCallbackExecutor$.scala$concurrent$Future$InternalCallbackExecutor$$unbatchedExecute(Future.scala:694)", "scala.concurrent.Future$InternalCallbackExecutor$.execute(Future.scala:691)", "akka.actor.LightArrayRevolverScheduler$TaskHolder.executeTask(Scheduler.scala:467)", "akka.actor.LightArrayRevolverScheduler$$anon$8.executeBucket$1(Scheduler.scala:419)", "akka.actor.LightArrayRevolverScheduler$$anon$8.nextTick(Scheduler.scala:423)", "akka.actor.LightArrayRevolverScheduler$$anon$8.run(Scheduler.scala:375)", "java.lang.Thread.run(Thread.java:745)"]
}
I am using the velvia/spark-jobserver:0.6.2.mesos-0.28.1.spark-1.6.1 and at the bottom I have added the jobserver.conf.
Below is the stack strace.
ERROR .jobserver.JobManagerActor [] [] - About to restart actor due to exception:
java.util.concurrent.TimeoutException: Futures timed out after [3 seconds]
at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:107)
at akka.dispatch.MonitorableThreadFactory$AkkaForkJoinWorkerThread$$anon$3.block(ThreadPoolBuilder.scala:169)
at scala.concurrent.forkjoin.ForkJoinPool.managedBlock(ForkJoinPool.java:3640)
at akka.dispatch.MonitorableThreadFactory$AkkaForkJoinWorkerThread.blockOn(ThreadPoolBuilder.scala:167)
at scala.concurrent.Await$.result(package.scala:107)
at spark.jobserver.JobManagerActor$$anonfun$startJobInternal$1.apply$mcV$sp(JobManagerActor.scala:200)
at scala.util.control.Breaks.breakable(Breaks.scala:37)
at spark.jobserver.JobManagerActor.startJobInternal(JobManagerActor.scala:192)
at spark.jobserver.JobManagerActor$$anonfun$wrappedReceive$1.applyOrElse(JobManagerActor.scala:144)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25)
at ooyala.common.akka.ActorStack$$anonfun$receive$1.applyOrElse(ActorStack.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25)
at ooyala.common.akka.Slf4jLogging$$anonfun$receive$1$$anonfun$applyOrElse$1.apply$mcV$sp(Slf4jLogging.scala:26)
at ooyala.common.akka.Slf4jLogging$class.ooyala$common$akka$Slf4jLogging$$withAkkaSourceLogging(Slf4jLogging.scala:35)
at ooyala.common.akka.Slf4jLogging$$anonfun$receive$1.applyOrElse(Slf4jLogging.scala:25)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25)
at ooyala.common.akka.ActorMetrics$$anonfun$receive$1.applyOrElse(ActorMetrics.scala:24)
at akka.actor.Actor$class.aroundReceive(Actor.scala:467)
at ooyala.common.akka.InstrumentedActor.aroundReceive(InstrumentedActor.scala:8)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516)
at akka.actor.ActorCell.invoke(ActorCell.scala:487)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:238)
at akka.dispatch.Mailbox.run(Mailbox.scala:220)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:397)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
Jobserver.conf
Template for Spark Job Server Docker config
You can easily override the spark master through SPARK_MASTER env variable
Spark Cluster / Job Server configuration
spark {
master = "local[4]"
master = ${?SPARK_MASTER}
Default # of CPUs for jobs to use for Spark standalone cluster
job-number-cpus = 4
jobserver {
port = 8090
jobdao = spark.jobserver.io.JobSqlDAO
}
predefined Spark contexts
contexts {
my-low-latency-context {
num-cpu-cores = 1 # Number of cores to allocate. Required.
memory-per-node = 512m # Executor memory per node, -Xmx style eg 512m, 1G, etc.
}
# define additional contexts here
}
universal context configuration. These settings can be overridden, see README.md
context-settings {
num-cpu-cores = 2 # Number of cores to allocate. Required.
memory-per-node = 1024m # Executor memory per node, -Xmx style eg 512m, #1G, etc.
}
This needs to match SPARK_HOME for cluster SparkContexts to be created successfully
home = "/usr/local/spark"
}
akka {
remote.netty.tcp {
# This controls the maximum message size, including job results, that can be sent
maximum-frame-size = 30 MiB
}
}
spray.can.server {
uncomment the next line for making this an HTTPS example
ssl-encryption = on
idle-timeout = 210 s
request-timeout = 200 s
pipelining-limit = 2 # for maximum performance (prevents StopReading / ResumeReading messages to the IOBridge)
Needed for HTTP/1.0 requests with missing Host headers
default-host-header = "spray.io:8765"
parsing.max-content-length = 400m
}
client {
The time period within which the TCP connecting process must be completed.
Set to
infinite
to disable.connecting-timeout = 10s
}
The text was updated successfully, but these errors were encountered: