-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
metafile.yml
125 lines (124 loc) · 3.97 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
Collections:
- Name: VGG
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x Xp GPUs
Epochs: 100
Batch Size: 256
Architecture:
- VGG
Paper:
URL: https://arxiv.org/abs/1409.1556
Title: "Very Deep Convolutional Networks for Large-Scale Image Recognition"
README: configs/vgg/README.md
Code:
URL: https://github.com/open-mmlab/mmpretrain/blob/v0.15.0/mmcls/models/backbones/vgg.py#L39
Version: v0.15.0
Models:
- Name: vgg11_8xb32_in1k
Metadata:
FLOPs: 7630000000
Parameters: 132860000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 68.75
Top 5 Accuracy: 88.87
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_batch256_imagenet_20210208-4271cd6c.pth
Config: configs/vgg/vgg11_8xb32_in1k.py
- Name: vgg13_8xb32_in1k
Metadata:
FLOPs: 11340000000
Parameters: 133050000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 70.02
Top 5 Accuracy: 89.46
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_batch256_imagenet_20210208-4d1d6080.pth
Config: configs/vgg/vgg13_8xb32_in1k.py
- Name: vgg16_8xb32_in1k
Metadata:
FLOPs: 15500000000
Parameters: 138360000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 71.62
Top 5 Accuracy: 90.49
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_batch256_imagenet_20210208-db26f1a5.pth
Config: configs/vgg/vgg16_8xb32_in1k.py
- Name: vgg19_8xb32_in1k
Metadata:
FLOPs: 19670000000
Parameters: 143670000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 72.41
Top 5 Accuracy: 90.8
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_batch256_imagenet_20210208-e6920e4a.pth
Config: configs/vgg/vgg19_8xb32_in1k.py
- Name: vgg11bn_8xb32_in1k
Metadata:
FLOPs: 7640000000
Parameters: 132870000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 70.67
Top 5 Accuracy: 90.16
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_bn_batch256_imagenet_20210207-f244902c.pth
Config: configs/vgg/vgg11bn_8xb32_in1k.py
- Name: vgg13bn_8xb32_in1k
Metadata:
FLOPs: 11360000000
Parameters: 133050000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 72.12
Top 5 Accuracy: 90.66
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_bn_batch256_imagenet_20210207-1a8b7864.pth
Config: configs/vgg/vgg13bn_8xb32_in1k.py
- Name: vgg16bn_8xb32_in1k
Metadata:
FLOPs: 15530000000
Parameters: 138370000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 73.74
Top 5 Accuracy: 91.66
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_bn_batch256_imagenet_20210208-7e55cd29.pth
Config: configs/vgg/vgg16bn_8xb32_in1k.py
- Name: vgg19bn_8xb32_in1k
Metadata:
FLOPs: 19700000000
Parameters: 143680000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 74.68
Top 5 Accuracy: 92.27
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.pth
Config: configs/vgg/vgg19bn_8xb32_in1k.py