forked from ayang861/parcelization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathona_prep.py
executable file
·225 lines (195 loc) · 8.23 KB
/
ona_prep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!venv/bin/python
from itertools import cycle
from pathlib import Path
import matplotlib.pyplot as plt
import networkx as nx
import osmnx as ox
import pandas as pd
import shapefile
from descartes import PolygonPatch
from networkx.readwrite import json_graph
from shapely.geometry import LineString, MultiLineString, Polygon, mapping
from shapely.ops import cascaded_union
# colors = cycle([
# "#1a281f", "#635255", "#ce7b91", "#c0e8f9", "#b8d3d1",
# "#413c58", "#a3c4bc", "#bfd7b5", "#e7efc5", "#f2dda4",
# "#c03221", "#f2d0a4", "#545e75", "#3f826d", "#605b56",
# "#837a75", "#acc18a", "#dafeb7", "#f2fbe0"])
colors = cycle([
tuple(_/256.0 for _ in rgb) for rgb in [
[180, 213, 202],
[134, 188, 168],
[94, 153, 131],
[62, 101, 88]
]
])
def diff_polygonize(region, linestrings, epsilon=0.00005):
# https://gis.stackexchange.com/a/58674
# suggest epsilon of 0.0001 for generating graphics, and 0.00005 to generate shapefiles
return region.difference(MultiLineString(linestrings).buffer(epsilon))
def geometry_text_to_polygon(geometry_string):
points = [tuple(float(xy) for xy in coordinate.split()[1::-1]) for coordinate in geometry_string.split(";")]
return Polygon(points)
def edge_to_geometry(nodes, edge):
if "geometry" in edge.keys():
return edge["geometry"]
src = nodes[edge["source"]]
tgt = nodes[edge["target"]]
return LineString([(src["x"], src["y"]), (tgt["x"], tgt["y"])])
def linestrings_from_network(graph):
json_graph_rep = json_graph.node_link_data(graph)
nodes = {node["id"]: node for node in json_graph_rep["nodes"]}
edges = json_graph_rep["links"]
return [edge_to_geometry(nodes, edge) for edge in edges]
def get_osm_graph(data_prefix, _id, name, polygon):
try:
return ox.graph_from_polygon(polygon, network_type="all_private", retain_all=True)
except Exception as e:
print(_id, name, e)
return None
def main(data_prefix, ona_csv_path, ids, geometry_column, settlement_name_column, output_filename, network_search_buffer = 0.001, parcel_files=None, export_shapefile=False):
# network_search_buffer: suggest 0.001 for single-settlement zoom-ins, 0.01 for graph construction
print("reading data")
ona = pd.read_csv(data_prefix/ona_csv_path)
ona = ona.loc[ona["_id"].isin(ids)]
ona = ona[["_id", settlement_name_column, geometry_column]]
ona[geometry_column] = ona[geometry_column].apply(geometry_text_to_polygon)
original_polygons = list(ona[geometry_column])
multipolygon = cascaded_union(original_polygons)
buffered_multipolygon = multipolygon.buffer(network_search_buffer)
print("getting graph")
road_network = ox.graph_from_polygon(buffered_multipolygon, network_type="all_private", retain_all=True)#, clean_periphery=False, simplify=True)
print("parsing graph")
linestrings = linestrings_from_network(road_network)
polygons = diff_polygonize(buffered_multipolygon, linestrings)
print("plotting")
fig, ax = ox.plot_graph(road_network, close=False, show=False, node_color='black', node_size=1)#, edge_color="white")
# for polygon in original_polygons:
# ax.add_patch(PolygonPatch(polygon, fc='#bb5a40', ec='k', linewidth=0, alpha=0.6, zorder=10))
plt.autoscale()
plt.savefig(output_filename.replace(".shp", "_network.png"), bbox_inches="tight", dpi=300, transparent=True)
plt.show()
fig, ax = ox.plot_graph(road_network, close=False, show=False, node_alpha=0, edge_alpha=0)
mp_border = buffered_multipolygon.boundary
filtered_polygons = []
for (polygon, color) in zip(polygons, colors):
# ax.add_patch(PolygonPatch(polygon, fc=color, ec='white', linewidth=0.5, zorder=10))
if not mp_border.intersects(polygon):
filtered_polygons.append(polygon)
ax.add_patch(PolygonPatch(polygon, fc=color, ec='white', linewidth=0.5, zorder=10))
if parcel_files is not None:
for pf in parcel_files:
with shapefile.Reader(pf) as shp:
for sr in shp.shapeRecords():
# print(sr.record)
ax.add_patch(PolygonPatch(sr.shape, fc="white", ec='white', linewidth=0.5, alpha=0.2, zorder=10))
plt.autoscale()
ax.axis('off')
ax.margins(0)
ax.tick_params(which='both', direction='in')
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.savefig(output_filename.replace(".shp", "_blocks.png"), bbox_inches="tight", dpi=300, transparent=True)
plt.show()
if export_shapefile:
print("exporting shapefile")
with shapefile.Writer(data_prefix/output_filename) as shp:
shp.field("index", "N")
for (index, polygon) in enumerate(filtered_polygons):
shp.record(index)
shp.shape(mapping(polygon))
def freetown():
data_prefix = Path("data/private/sierra_leone")
ona_csv_path = "sdi_boundaries_2019_01_29_05_18_33_811857.csv"
ids = set([
12227565,
13792377,
12483794,
12483646,
12572108,
12575839,
13792326,
12575032,
2316424,
12731894,
12731669,
12480824,
12482641,
5120040,
5120025,
5119968,
1037833,
12484335,
16181451,
16176788,
16176404,
16081266,
2316927,
2316558,
2316856,
1037824,
1077121,
1037845,
12484697,
12480901,
1248109
]) - set([1037845, 2316856, 5119968, 12482641, 12484697, 12572108 ]) # ignore known geometry issues
geometry_column = "section_C/C2_Boundary"
settlement_name_column = "section_B/B7_Settlement_Name_Community"
# output_filename = "freetown_blocks.shp"
# output_filename = "dwarzark.shp"
output_filename = "freetown_extended.shp"
main(data_prefix, ona_csv_path, ids, geometry_column, settlement_name_column, output_filename, 0.015, export_shapefile=True)
def lagos_focus():
data_prefix = Path("data/private/nigeria")
ona_csv_path = "sdi_boundaries_2019_03_07_01_45_19_506653.csv"
ids = set([
#?????? #afolabi alasia
3483778, #ago egun bariga
33451457, #arobadade
4473536, #daramola
6437202, #ebutte illaje
16751038, #isale akoka
# 3652431, #Ojora/Abete #broken geometry
1387685 #Orisumibare
])
geometry_column = "section_C/C2_Boundary"
settlement_name_column = "section_B/B7_Settlement_Name_Community"
output_filename = "lagos_focus.shp"
parcel_files = [
"data/private/lagos_parcels/lagosp_setinbound_section_7_Ojora Abete.shp",
"data/private/lagos_parcels/lagosp_setinbound_section__7_Ago Egun.shp",
"data/private/lagos_parcels/lagosp_setinbound_section__7_Arobadade.shp",
"data/private/lagos_parcels/lagosp_setinbound_section__7_Daramola.shp",
"data/private/lagos_parcels/lagosp_setinbound_section__7_Ebute Ilaje.shp",
"data/private/lagos_parcels/lagosp_setinbound_section__7_Isale Akoka.shp"
]
# main(data_prefix, ona_csv_path, ids, geometry_column, settlement_name_column, output_filename, 0.001, export_shapefile=False, parcel_files=parcel_files)
main(data_prefix, ona_csv_path, ids, geometry_column, settlement_name_column, output_filename, 0.00001, export_shapefile=False)
def sl_wmb():
data_prefix = Path("data/private/sierra_leone_wmb")
ona_csv_path = "sdi_boundaries_2019_01_29_05_18_33_811857.csv"
ids = set([
5120025,
5120040,
5119968,
12482641,
12480824,
12731669,
])
geometry_column = "section_C/C2_Boundary"
settlement_name_column = "section_B/B7_Settlement_Name_Community"
output_filename = "sierra_leone_wmb.shp"
ona = pd.read_csv(data_prefix/ona_csv_path)
ona = ona.loc[ona["_id"].isin(ids)]
ona = ona[["_id", settlement_name_column, geometry_column]]
ona[geometry_column] = ona[geometry_column].apply(geometry_text_to_polygon)
with shapefile.Writer(data_prefix/output_filename) as shp:
shp.field("id", "N")
shp.field("name", "C")
for (_id, name, geom) in ona.itertuples(index=False):
shp.record(_id, name)
# shp.record(name)
shp.shape(mapping(geom))
if __name__ == "__main__":
freetown()