-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfft.c
393 lines (348 loc) · 11.5 KB
/
fft.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
/* ***** BEGIN LICENSE BLOCK *****
* Source last modified: $Id: fft.c,v 1.1 2005/02/26 01:47:34 jrecker Exp $
*
* Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.
*
* The contents of this file, and the files included with this file,
* are subject to the current version of the RealNetworks Public
* Source License (the "RPSL") available at
* http://www.helixcommunity.org/content/rpsl unless you have licensed
* the file under the current version of the RealNetworks Community
* Source License (the "RCSL") available at
* http://www.helixcommunity.org/content/rcsl, in which case the RCSL
* will apply. You may also obtain the license terms directly from
* RealNetworks. You may not use this file except in compliance with
* the RPSL or, if you have a valid RCSL with RealNetworks applicable
* to this file, the RCSL. Please see the applicable RPSL or RCSL for
* the rights, obligations and limitations governing use of the
* contents of the file.
*
* This file is part of the Helix DNA Technology. RealNetworks is the
* developer of the Original Code and owns the copyrights in the
* portions it created.
*
* This file, and the files included with this file, is distributed
* and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY
* KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS
* ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET
* ENJOYMENT OR NON-INFRINGEMENT.
*
* Technology Compatibility Kit Test Suite(s) Location:
* http://www.helixcommunity.org/content/tck
*
* Contributor(s):
*
* ***** END LICENSE BLOCK ***** */
/**************************************************************************************
* Fixed-point HE-AAC decoder
* Jon Recker ([email protected]), Ken Cooke ([email protected])
* February 2005
*
* fft.c - Ken's optimized radix-4 DIT FFT, optional radix-8 first pass for odd log2(N)
**************************************************************************************/
#include "coder.h"
#include "assembly.h"
#define NUM_FFT_SIZES 2
static const int nfftTab[NUM_FFT_SIZES] PROGMEM ={64, 512};
static const int nfftlog2Tab[NUM_FFT_SIZES] PROGMEM = {6, 9};
#define SQRT1_2 0x5a82799a /* sqrt(1/2) in Q31 */
#define swapcplx(p0,p1) \
t = p0; t1 = *(&(p0)+1); p0 = p1; *(&(p0)+1) = *(&(p1)+1); p1 = t; *(&(p1)+1) = t1
/**************************************************************************************
* Function: BitReverse
*
* Description: Ken's fast in-place bit reverse, using super-small table
*
* Inputs: buffer of samples
* table index (for transform size)
*
* Outputs: bit-reversed samples in same buffer
*
* Return: none
**************************************************************************************/
/*__attribute__ ((section (".data"))) */ static void BitReverse(int *inout, int tabidx)
{
int *part0, *part1;
int a,b, t,t1;
const unsigned char* tab = bitrevtab + bitrevtabOffset[tabidx];
int nbits = nfftlog2Tab[tabidx];
part0 = inout;
part1 = inout + (1 << nbits);
while ((a = pgm_read_byte(tab++)) != 0) {
b = pgm_read_byte(tab++);
swapcplx(part0[4*a+0], part0[4*b+0]); /* 0xxx0 <-> 0yyy0 */
swapcplx(part0[4*a+2], part1[4*b+0]); /* 0xxx1 <-> 1yyy0 */
swapcplx(part1[4*a+0], part0[4*b+2]); /* 1xxx0 <-> 0yyy1 */
swapcplx(part1[4*a+2], part1[4*b+2]); /* 1xxx1 <-> 1yyy1 */
}
do {
swapcplx(part0[4*a+2], part1[4*a+0]); /* 0xxx1 <-> 1xxx0 */
} while ((a = pgm_read_byte(tab++)) != 0);
}
/**************************************************************************************
* Function: R4FirstPass
*
* Description: radix-4 trivial pass for decimation-in-time FFT
*
* Inputs: buffer of (bit-reversed) samples
* number of R4 butterflies per group (i.e. nfft / 4)
*
* Outputs: processed samples in same buffer
*
* Return: none
*
* Notes: assumes 2 guard bits, gains no integer bits,
* guard bits out = guard bits in - 2
**************************************************************************************/
/* __attribute__ ((section (".data"))) */ static void R4FirstPass(int *x, int bg)
{
int ar, ai, br, bi, cr, ci, dr, di;
for (; bg != 0; bg--) {
ar = x[0] + x[2];
br = x[0] - x[2];
ai = x[1] + x[3];
bi = x[1] - x[3];
cr = x[4] + x[6];
dr = x[4] - x[6];
ci = x[5] + x[7];
di = x[5] - x[7];
/* max per-sample gain = 4.0 (adding 4 inputs together) */
x[0] = ar + cr;
x[4] = ar - cr;
x[1] = ai + ci;
x[5] = ai - ci;
x[2] = br + di;
x[6] = br - di;
x[3] = bi - dr;
x[7] = bi + dr;
x += 8;
}
}
/**************************************************************************************
* Function: R8FirstPass
*
* Description: radix-8 trivial pass for decimation-in-time FFT
*
* Inputs: buffer of (bit-reversed) samples
* number of R8 butterflies per group (i.e. nfft / 8)
*
* Outputs: processed samples in same buffer
*
* Return: none
*
* Notes: assumes 3 guard bits, gains 1 integer bit
* guard bits out = guard bits in - 3 (if inputs are full scale)
* or guard bits in - 2 (if inputs bounded to +/- sqrt(2)/2)
* see scaling comments in code
**************************************************************************************/
/* __attribute__ ((section (".data"))) */ static void R8FirstPass(int *x, int bg)
{
int ar, ai, br, bi, cr, ci, dr, di;
int sr, si, tr, ti, ur, ui, vr, vi;
int wr, wi, xr, xi, yr, yi, zr, zi;
for (; bg != 0; bg--) {
ar = x[0] + x[2];
br = x[0] - x[2];
ai = x[1] + x[3];
bi = x[1] - x[3];
cr = x[4] + x[6];
dr = x[4] - x[6];
ci = x[5] + x[7];
di = x[5] - x[7];
sr = ar + cr;
ur = ar - cr;
si = ai + ci;
ui = ai - ci;
tr = br - di;
vr = br + di;
ti = bi + dr;
vi = bi - dr;
ar = x[ 8] + x[10];
br = x[ 8] - x[10];
ai = x[ 9] + x[11];
bi = x[ 9] - x[11];
cr = x[12] + x[14];
dr = x[12] - x[14];
ci = x[13] + x[15];
di = x[13] - x[15];
/* max gain of wr/wi/yr/yi vs input = 2
* (sum of 4 samples >> 1)
*/
wr = (ar + cr) >> 1;
yr = (ar - cr) >> 1;
wi = (ai + ci) >> 1;
yi = (ai - ci) >> 1;
/* max gain of output vs input = 4
* (sum of 4 samples >> 1 + sum of 4 samples >> 1)
*/
x[ 0] = (sr >> 1) + wr;
x[ 8] = (sr >> 1) - wr;
x[ 1] = (si >> 1) + wi;
x[ 9] = (si >> 1) - wi;
x[ 4] = (ur >> 1) + yi;
x[12] = (ur >> 1) - yi;
x[ 5] = (ui >> 1) - yr;
x[13] = (ui >> 1) + yr;
ar = br - di;
cr = br + di;
ai = bi + dr;
ci = bi - dr;
/* max gain of xr/xi/zr/zi vs input = 4*sqrt(2)/2 = 2*sqrt(2)
* (sum of 8 samples, multiply by sqrt(2)/2, implicit >> 1 from Q31)
*/
xr = MULSHIFT32(SQRT1_2, ar - ai);
xi = MULSHIFT32(SQRT1_2, ar + ai);
zr = MULSHIFT32(SQRT1_2, cr - ci);
zi = MULSHIFT32(SQRT1_2, cr + ci);
/* max gain of output vs input = (2 + 2*sqrt(2) ~= 4.83)
* (sum of 4 samples >> 1, plus xr/xi/zr/zi with gain of 2*sqrt(2))
* in absolute terms, we have max gain of appx 9.656 (4 + 0.707*8)
* but we also gain 1 int bit (from MULSHIFT32 or from explicit >> 1)
*/
x[ 6] = (tr >> 1) - xr;
x[14] = (tr >> 1) + xr;
x[ 7] = (ti >> 1) - xi;
x[15] = (ti >> 1) + xi;
x[ 2] = (vr >> 1) + zi;
x[10] = (vr >> 1) - zi;
x[ 3] = (vi >> 1) - zr;
x[11] = (vi >> 1) + zr;
x += 16;
}
}
/**************************************************************************************
* Function: R4Core
*
* Description: radix-4 pass for decimation-in-time FFT
*
* Inputs: buffer of samples
* number of R4 butterflies per group
* number of R4 groups per pass
* pointer to twiddle factors tables
*
* Outputs: processed samples in same buffer
*
* Return: none
*
* Notes: gain 2 integer bits per pass (see scaling comments in code)
* min 1 GB in
* gbOut = gbIn - 1 (short block) or gbIn - 2 (long block)
* uses 3-mul, 3-add butterflies instead of 4-mul, 2-add
**************************************************************************************/
/* __attribute__ ((section (".data"))) */ static void R4Core(int *x, int bg, int gp, int *wtab)
{
int ar, ai, br, bi, cr, ci, dr, di, tr, ti;
int wd, ws, wi;
int i, j, step;
int *xptr, *wptr;
for (; bg != 0; gp <<= 2, bg >>= 2) {
step = 2*gp;
xptr = x;
/* max per-sample gain, per group < 1 + 3*sqrt(2) ~= 5.25 if inputs x are full-scale
* do 3 groups for long block, 2 groups for short block (gain 2 int bits per group)
*
* very conservative scaling:
* group 1: max gain = 5.25, int bits gained = 2, gb used = 1 (2^3 = 8)
* group 2: max gain = 5.25^2 = 27.6, int bits gained = 4, gb used = 1 (2^5 = 32)
* group 3: max gain = 5.25^3 = 144.7, int bits gained = 6, gb used = 2 (2^8 = 256)
*/
for (i = bg; i != 0; i--) {
wptr = wtab;
for (j = gp; j != 0; j--) {
ar = xptr[0];
ai = xptr[1];
xptr += step;
/* gain 2 int bits for br/bi, cr/ci, dr/di (MULSHIFT32 by Q30)
* gain 1 net GB
*/
ws = wptr[0];
wi = wptr[1];
br = xptr[0];
bi = xptr[1];
wd = ws + 2*wi;
tr = MULSHIFT32(wi, br + bi);
br = MULSHIFT32(wd, br) - tr; /* cos*br + sin*bi */
bi = MULSHIFT32(ws, bi) + tr; /* cos*bi - sin*br */
xptr += step;
ws = wptr[2];
wi = wptr[3];
cr = xptr[0];
ci = xptr[1];
wd = ws + 2*wi;
tr = MULSHIFT32(wi, cr + ci);
cr = MULSHIFT32(wd, cr) - tr;
ci = MULSHIFT32(ws, ci) + tr;
xptr += step;
ws = wptr[4];
wi = wptr[5];
dr = xptr[0];
di = xptr[1];
wd = ws + 2*wi;
tr = MULSHIFT32(wi, dr + di);
dr = MULSHIFT32(wd, dr) - tr;
di = MULSHIFT32(ws, di) + tr;
wptr += 6;
tr = ar;
ti = ai;
ar = (tr >> 2) - br;
ai = (ti >> 2) - bi;
br = (tr >> 2) + br;
bi = (ti >> 2) + bi;
tr = cr;
ti = ci;
cr = tr + dr;
ci = di - ti;
dr = tr - dr;
di = di + ti;
xptr[0] = ar + ci;
xptr[1] = ai + dr;
xptr -= step;
xptr[0] = br - cr;
xptr[1] = bi - di;
xptr -= step;
xptr[0] = ar - ci;
xptr[1] = ai - dr;
xptr -= step;
xptr[0] = br + cr;
xptr[1] = bi + di;
xptr += 2;
}
xptr += 3*step;
}
wtab += 3*step;
}
}
/**************************************************************************************
* Function: R4FFT
*
* Description: Ken's very fast in-place radix-4 decimation-in-time FFT
*
* Inputs: table index (for transform size)
* buffer of samples (non bit-reversed)
*
* Outputs: processed samples in same buffer
*
* Return: none
*
* Notes: assumes 5 guard bits in for nfft <= 512
* gbOut = gbIn - 4 (assuming input is from PreMultiply)
* gains log2(nfft) - 2 int bits total
* so gain 7 int bits (LONG), 4 int bits (SHORT)
**************************************************************************************/
void R4FFT(int tabidx, int *x)
{
int order = nfftlog2Tab[tabidx];
int nfft = nfftTab[tabidx];
/* decimation in time */
BitReverse(x, tabidx);
if (order & 0x1) {
/* long block: order = 9, nfft = 512 */
R8FirstPass(x, nfft >> 3); /* gain 1 int bit, lose 2 GB */
R4Core(x, nfft >> 5, 8, (int *)twidTabOdd); /* gain 6 int bits, lose 2 GB */
} else {
/* short block: order = 6, nfft = 64 */
R4FirstPass(x, nfft >> 2); /* gain 0 int bits, lose 2 GB */
R4Core(x, nfft >> 4, 4, (int *)twidTabEven); /* gain 4 int bits, lose 1 GB */
}
}