-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsbrqmf.c
527 lines (478 loc) · 19 KB
/
sbrqmf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
/* ***** BEGIN LICENSE BLOCK *****
* Source last modified: $Id: sbrqmf.c,v 1.2 2005/05/19 20:45:20 jrecker Exp $
*
* Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.
*
* The contents of this file, and the files included with this file,
* are subject to the current version of the RealNetworks Public
* Source License (the "RPSL") available at
* http://www.helixcommunity.org/content/rpsl unless you have licensed
* the file under the current version of the RealNetworks Community
* Source License (the "RCSL") available at
* http://www.helixcommunity.org/content/rcsl, in which case the RCSL
* will apply. You may also obtain the license terms directly from
* RealNetworks. You may not use this file except in compliance with
* the RPSL or, if you have a valid RCSL with RealNetworks applicable
* to this file, the RCSL. Please see the applicable RPSL or RCSL for
* the rights, obligations and limitations governing use of the
* contents of the file.
*
* This file is part of the Helix DNA Technology. RealNetworks is the
* developer of the Original Code and owns the copyrights in the
* portions it created.
*
* This file, and the files included with this file, is distributed
* and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY
* KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS
* ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET
* ENJOYMENT OR NON-INFRINGEMENT.
*
* Technology Compatibility Kit Test Suite(s) Location:
* http://www.helixcommunity.org/content/tck
*
* Contributor(s):
*
* ***** END LICENSE BLOCK ***** */
/**************************************************************************************
* Fixed-point HE-AAC decoder
* Jon Recker ([email protected])
* February 2005
*
* sbrqmf.c - analysis and synthesis QMF filters for SBR
**************************************************************************************/
#include "sbr.h"
#include "assembly.h"
/* PreMultiply64() table
* format = Q30
* reordered for sequential access
*
* for (i = 0; i < 64/4; i++) {
* angle = (i + 0.25) * M_PI / nmdct;
* x = (cos(angle) + sin(angle));
* x = sin(angle);
*
* angle = (nmdct/2 - 1 - i + 0.25) * M_PI / nmdct;
* x = (cos(angle) + sin(angle));
* x = sin(angle);
* }
*/
static const int cos4sin4tab64[64] PROGMEM = {
0x40c7d2bd, 0x00c90e90, 0x424ff28f, 0x3ff4e5e0, 0x43cdd89a, 0x03ecadcf, 0x454149fc, 0x3fc395f9,
0x46aa0d6d, 0x070de172, 0x4807eb4b, 0x3f6af2e3, 0x495aada2, 0x0a2abb59, 0x4aa22036, 0x3eeb3347,
0x4bde1089, 0x0d415013, 0x4d0e4de2, 0x3e44a5ef, 0x4e32a956, 0x104fb80e, 0x4f4af5d1, 0x3d77b192,
0x50570819, 0x135410c3, 0x5156b6d9, 0x3c84d496, 0x5249daa2, 0x164c7ddd, 0x53304df6, 0x3b6ca4c4,
0x5409ed4b, 0x19372a64, 0x54d69714, 0x3a2fcee8, 0x55962bc0, 0x1c1249d8, 0x56488dc5, 0x38cf1669,
0x56eda1a0, 0x1edc1953, 0x57854ddd, 0x374b54ce, 0x580f7b19, 0x2192e09b, 0x588c1404, 0x35a5793c,
0x58fb0568, 0x2434f332, 0x595c3e2a, 0x33de87de, 0x59afaf4c, 0x26c0b162, 0x59f54bee, 0x31f79948,
0x5a2d0957, 0x29348937, 0x5a56deec, 0x2ff1d9c7, 0x5a72c63b, 0x2b8ef77d, 0x5a80baf6, 0x2dce88aa,
};
/* PostMultiply64() table
* format = Q30
* reordered for sequential access
*
* for (i = 0; i <= (32/2); i++) {
* angle = i * M_PI / 64;
* x = (cos(angle) + sin(angle));
* x = sin(angle);
* }
*/
static const int cos1sin1tab64[34] PROGMEM = {
0x40000000, 0x00000000, 0x43103085, 0x0323ecbe, 0x45f704f7, 0x0645e9af, 0x48b2b335, 0x09640837,
0x4b418bbe, 0x0c7c5c1e, 0x4da1fab5, 0x0f8cfcbe, 0x4fd288dc, 0x1294062f, 0x51d1dc80, 0x158f9a76,
0x539eba45, 0x187de2a7, 0x553805f2, 0x1b5d100a, 0x569cc31b, 0x1e2b5d38, 0x57cc15bc, 0x20e70f32,
0x58c542c5, 0x238e7673, 0x5987b08a, 0x261feffa, 0x5a12e720, 0x2899e64a, 0x5a6690ae, 0x2afad269,
0x5a82799a, 0x2d413ccd,
};
/**************************************************************************************
* Function: PreMultiply64
*
* Description: pre-twiddle stage of 64-point DCT-IV
*
* Inputs: buffer of 64 samples
*
* Outputs: processed samples in same buffer
*
* Return: none
*
* Notes: minimum 1 GB in, 2 GB out, gains 2 int bits
* gbOut = gbIn + 1
* output is limited to sqrt(2)/2 plus GB in full GB
* uses 3-mul, 3-add butterflies instead of 4-mul, 2-add
**************************************************************************************/
static void PreMultiply64(int *zbuf1)
{
int i, ar1, ai1, ar2, ai2, z1, z2;
int t, cms2, cps2a, sin2a, cps2b, sin2b;
int *zbuf2;
const int *csptr;
zbuf2 = zbuf1 + 64 - 1;
csptr = cos4sin4tab64;
/* whole thing should fit in registers - verify that compiler does this */
for (i = 64 >> 2; i != 0; i--) {
/* cps2 = (cos+sin), sin2 = sin, cms2 = (cos-sin) */
cps2a = *csptr++;
sin2a = *csptr++;
cps2b = *csptr++;
sin2b = *csptr++;
ar1 = *(zbuf1 + 0);
ai2 = *(zbuf1 + 1);
ai1 = *(zbuf2 + 0);
ar2 = *(zbuf2 - 1);
/* gain 2 ints bit from MULSHIFT32 by Q30
* max per-sample gain (ignoring implicit scaling) = MAX(sin(angle)+cos(angle)) = 1.414
* i.e. gain 1 GB since worst case is sin(angle) = cos(angle) = 0.707 (Q30), gain 2 from
* extra sign bits, and eat one in adding
*/
t = MULSHIFT32(sin2a, ar1 + ai1);
z2 = MULSHIFT32(cps2a, ai1) - t;
cms2 = cps2a - 2*sin2a;
z1 = MULSHIFT32(cms2, ar1) + t;
*zbuf1++ = z1; /* cos*ar1 + sin*ai1 */
*zbuf1++ = z2; /* cos*ai1 - sin*ar1 */
t = MULSHIFT32(sin2b, ar2 + ai2);
z2 = MULSHIFT32(cps2b, ai2) - t;
cms2 = cps2b - 2*sin2b;
z1 = MULSHIFT32(cms2, ar2) + t;
*zbuf2-- = z2; /* cos*ai2 - sin*ar2 */
*zbuf2-- = z1; /* cos*ar2 + sin*ai2 */
}
}
/**************************************************************************************
* Function: PostMultiply64
*
* Description: post-twiddle stage of 64-point type-IV DCT
*
* Inputs: buffer of 64 samples
* number of output samples to calculate
*
* Outputs: processed samples in same buffer
*
* Return: none
*
* Notes: minimum 1 GB in, 2 GB out, gains 2 int bits
* gbOut = gbIn + 1
* output is limited to sqrt(2)/2 plus GB in full GB
* nSampsOut is rounded up to next multiple of 4, since we calculate
* 4 samples per loop
**************************************************************************************/
static void PostMultiply64(int *fft1, int nSampsOut)
{
int i, ar1, ai1, ar2, ai2;
int t, cms2, cps2, sin2;
int *fft2;
const int *csptr;
csptr = cos1sin1tab64;
fft2 = fft1 + 64 - 1;
/* load coeffs for first pass
* cps2 = (cos+sin)/2, sin2 = sin/2, cms2 = (cos-sin)/2
*/
cps2 = *csptr++;
sin2 = *csptr++;
cms2 = cps2 - 2*sin2;
for (i = (nSampsOut + 3) >> 2; i != 0; i--) {
ar1 = *(fft1 + 0);
ai1 = *(fft1 + 1);
ar2 = *(fft2 - 1);
ai2 = *(fft2 + 0);
/* gain 2 int bits (multiplying by Q30), max gain = sqrt(2) */
t = MULSHIFT32(sin2, ar1 + ai1);
*fft2-- = t - MULSHIFT32(cps2, ai1);
*fft1++ = t + MULSHIFT32(cms2, ar1);
cps2 = *csptr++;
sin2 = *csptr++;
ai2 = -ai2;
t = MULSHIFT32(sin2, ar2 + ai2);
*fft2-- = t - MULSHIFT32(cps2, ai2);
cms2 = cps2 - 2*sin2;
*fft1++ = t + MULSHIFT32(cms2, ar2);
}
}
/**************************************************************************************
* Function: QMFAnalysisConv
*
* Description: convolution kernel for analysis QMF
*
* Inputs: pointer to coefficient table, reordered for sequential access
* delay buffer of size 32*10 = 320 real-valued PCM samples
* index for delay ring buffer (range = [0, 9])
*
* Outputs: 64 consecutive 32-bit samples
*
* Return: none
*
* Notes: this is carefully written to be efficient on ARM
* use the assembly code version in sbrqmfak.s when building for ARM!
**************************************************************************************/
#if (defined (__arm) && defined (__ARMCC_VERSION)) || (defined (_WIN32) && defined (_WIN32_WCE) && defined (ARM)) || (defined(__GNUC__) && defined(__arm__))
#ifdef __cplusplus
extern "C"
#endif
void QMFAnalysisConv(int *cTab, int *delay, int dIdx, int *uBuf);
#else
void QMFAnalysisConv(int *cTab, int *delay, int dIdx, int *uBuf)
{
int k, dOff;
int *cPtr0, *cPtr1;
U64 u64lo, u64hi;
dOff = dIdx*32 + 31;
cPtr0 = cTab;
cPtr1 = cTab + 33*5 - 1;
/* special first pass since we need to flip sign to create cTab[384], cTab[512] */
u64lo.w64 = 0;
u64hi.w64 = 0;
u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64lo.w64 = MADD64(u64lo.w64, -(*cPtr1--), delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64lo.w64 = MADD64(u64lo.w64, -(*cPtr1--), delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
uBuf[0] = u64lo.r.hi32;
uBuf[32] = u64hi.r.hi32;
uBuf++;
dOff--;
/* max gain for any sample in uBuf, after scaling by cTab, ~= 0.99
* so we can just sum the uBuf values with no overflow problems
*/
for (k = 1; k <= 31; k++) {
u64lo.w64 = 0;
u64hi.w64 = 0;
u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64lo.w64 = MADD64(u64lo.w64, *cPtr0++, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64lo.w64 = MADD64(u64lo.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64lo.w64 = MADD64(u64lo.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
u64hi.w64 = MADD64(u64hi.w64, *cPtr1--, delay[dOff]); dOff -= 32; if (dOff < 0) {dOff += 320;}
uBuf[0] = u64lo.r.hi32;
uBuf[32] = u64hi.r.hi32;
uBuf++;
dOff--;
}
}
#endif
/**************************************************************************************
* Function: QMFAnalysis
*
* Description: 32-subband analysis QMF (4.6.18.4.1)
*
* Inputs: 32 consecutive samples of decoded 32-bit PCM, format = Q(fBitsIn)
* delay buffer of size 32*10 = 320 PCM samples
* number of fraction bits in input PCM
* index for delay ring buffer (range = [0, 9])
* number of subbands to calculate (range = [0, 32])
*
* Outputs: qmfaBands complex subband samples, format = Q(FBITS_OUT_QMFA)
* updated delay buffer
* updated delay index
*
* Return: guard bit mask
*
* Notes: output stored as RE{X0}, IM{X0}, RE{X1}, IM{X1}, ... RE{X31}, IM{X31}
* output stored in int buffer of size 64*2 = 128
* (zero-filled from XBuf[2*qmfaBands] to XBuf[127])
**************************************************************************************/
int QMFAnalysis(int *inbuf, int *delay, int *XBuf, int fBitsIn, int *delayIdx, int qmfaBands)
{
int n, y, shift, gbMask;
int *delayPtr, *uBuf, *tBuf;
/* use XBuf[128] as temp buffer for reordering */
uBuf = XBuf; /* first 64 samples */
tBuf = XBuf + 64; /* second 64 samples */
/* overwrite oldest PCM with new PCM
* delay[n] has 1 GB after shifting (either << or >>)
*/
delayPtr = delay + (*delayIdx * 32);
if (fBitsIn > FBITS_IN_QMFA) {
shift = MIN(fBitsIn - FBITS_IN_QMFA, 31);
for (n = 32; n != 0; n--) {
y = (*inbuf) >> shift;
inbuf++;
*delayPtr++ = y;
}
} else {
shift = MIN(FBITS_IN_QMFA - fBitsIn, 30);
for (n = 32; n != 0; n--) {
y = *inbuf++;
CLIP_2N_SHIFT30(y, shift);
*delayPtr++ = y;
}
}
QMFAnalysisConv((int *)cTabA, delay, *delayIdx, uBuf);
/* uBuf has at least 2 GB right now (1 from clipping to Q(FBITS_IN_QMFA), one from
* the scaling by cTab (MULSHIFT32(*delayPtr--, *cPtr++), with net gain of < 1.0)
* TODO - fuse with QMFAnalysisConv to avoid separate reordering
*/
tBuf[2*0 + 0] = uBuf[0];
tBuf[2*0 + 1] = uBuf[1];
for (n = 1; n < 31; n++) {
tBuf[2*n + 0] = -uBuf[64-n];
tBuf[2*n + 1] = uBuf[n+1];
}
tBuf[2*31 + 1] = uBuf[32];
tBuf[2*31 + 0] = -uBuf[33];
/* fast in-place DCT-IV - only need 2*qmfaBands output samples */
PreMultiply64(tBuf); /* 2 GB in, 3 GB out */
FFT32C(tBuf); /* 3 GB in, 1 GB out */
PostMultiply64(tBuf, qmfaBands*2); /* 1 GB in, 2 GB out */
/* TODO - roll into PostMultiply (if enough registers) */
gbMask = 0;
for (n = 0; n < qmfaBands; n++) {
XBuf[2*n+0] = tBuf[ n + 0]; /* implicit scaling of 2 in our output Q format */
gbMask |= FASTABS(XBuf[2*n+0]);
XBuf[2*n+1] = -tBuf[63 - n];
gbMask |= FASTABS(XBuf[2*n+1]);
}
/* fill top section with zeros for HF generation */
for ( ; n < 64; n++) {
XBuf[2*n+0] = 0;
XBuf[2*n+1] = 0;
}
*delayIdx = (*delayIdx == NUM_QMF_DELAY_BUFS - 1 ? 0 : *delayIdx + 1);
/* minimum of 2 GB in output */
return gbMask;
}
/* lose FBITS_LOST_DCT4_64 in DCT4, gain 6 for implicit scaling by 1/64, lose 1 for cTab multiply (Q31) */
#define FBITS_OUT_QMFS (FBITS_IN_QMFS - FBITS_LOST_DCT4_64 + 6 - 1)
#define RND_VAL (1 << (FBITS_OUT_QMFS-1))
/**************************************************************************************
* Function: QMFSynthesisConv
*
* Description: final convolution kernel for synthesis QMF
*
* Inputs: pointer to coefficient table, reordered for sequential access
* delay buffer of size 64*10 = 640 complex samples (1280 ints)
* index for delay ring buffer (range = [0, 9])
* number of QMF subbands to process (range = [0, 64])
* number of channels
*
* Outputs: 64 consecutive 16-bit PCM samples, interleaved by factor of nChans
*
* Return: none
*
* Notes: this is carefully written to be efficient on ARM
* use the assembly code version in sbrqmfsk.s when building for ARM!
**************************************************************************************/
#if (defined (__arm) && defined (__ARMCC_VERSION)) || (defined (_WIN32) && defined (_WIN32_WCE) && defined (ARM)) || (defined(__GNUC__) && defined(__arm__))
#ifdef __cplusplus
extern "C"
#endif
void QMFSynthesisConv(int *cPtr, int *delay, int dIdx, short *outbuf, int nChans);
#else
void QMFSynthesisConv(int *cPtr, int *delay, int dIdx, short *outbuf, int nChans)
{
int k, dOff0, dOff1;
U64 sum64;
dOff0 = (dIdx)*128;
dOff1 = dOff0 - 1;
if (dOff1 < 0)
dOff1 += 1280;
/* scaling note: total gain of coefs (cPtr[0]-cPtr[9] for any k) is < 2.0, so 1 GB in delay values is adequate */
for (k = 0; k <= 63; k++) {
sum64.w64 = 0;
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]); dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]); dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]); dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]); dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]); dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]); dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]); dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]); dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff0]); dOff0 -= 256; if (dOff0 < 0) {dOff0 += 1280;}
sum64.w64 = MADD64(sum64.w64, *cPtr++, delay[dOff1]); dOff1 -= 256; if (dOff1 < 0) {dOff1 += 1280;}
dOff0++;
dOff1--;
*outbuf = CLIPTOSHORT((sum64.r.hi32 + RND_VAL) >> FBITS_OUT_QMFS);
outbuf += nChans;
}
}
#endif
/**************************************************************************************
* Function: QMFSynthesis
*
* Description: 64-subband synthesis QMF (4.6.18.4.2)
*
* Inputs: 64 consecutive complex subband QMF samples, format = Q(FBITS_IN_QMFS)
* delay buffer of size 64*10 = 640 complex samples (1280 ints)
* index for delay ring buffer (range = [0, 9])
* number of QMF subbands to process (range = [0, 64])
* number of channels
*
* Outputs: 64 consecutive 16-bit PCM samples, interleaved by factor of nChans
* updated delay buffer
* updated delay index
*
* Return: none
*
* Notes: assumes MIN_GBITS_IN_QMFS guard bits in input, either from
* QMFAnalysis (if upsampling only) or from MapHF (if SBR on)
**************************************************************************************/
void QMFSynthesis(int *inbuf, int *delay, int *delayIdx, int qmfsBands, short *outbuf, int nChans)
{
int n, a0, a1, b0, b1, dOff0, dOff1, dIdx;
int *tBufLo, *tBufHi;
dIdx = *delayIdx;
tBufLo = delay + dIdx*128 + 0;
tBufHi = delay + dIdx*128 + 127;
/* reorder inputs to DCT-IV, only use first qmfsBands (complex) samples
* TODO - fuse with PreMultiply64 to avoid separate reordering steps
*/
for (n = 0; n < qmfsBands >> 1; n++) {
a0 = *inbuf++;
b0 = *inbuf++;
a1 = *inbuf++;
b1 = *inbuf++;
*tBufLo++ = a0;
*tBufLo++ = a1;
*tBufHi-- = b0;
*tBufHi-- = b1;
}
if (qmfsBands & 0x01) {
a0 = *inbuf++;
b0 = *inbuf++;
*tBufLo++ = a0;
*tBufHi-- = b0;
*tBufLo++ = 0;
*tBufHi-- = 0;
n++;
}
for ( ; n < 32; n++) {
*tBufLo++ = 0;
*tBufHi-- = 0;
*tBufLo++ = 0;
*tBufHi-- = 0;
}
tBufLo = delay + dIdx*128 + 0;
tBufHi = delay + dIdx*128 + 64;
/* 2 GB in, 3 GB out */
PreMultiply64(tBufLo);
PreMultiply64(tBufHi);
/* 3 GB in, 1 GB out */
FFT32C(tBufLo);
FFT32C(tBufHi);
/* 1 GB in, 2 GB out */
PostMultiply64(tBufLo, 64);
PostMultiply64(tBufHi, 64);
/* could fuse with PostMultiply64 to avoid separate pass */
dOff0 = dIdx*128;
dOff1 = dIdx*128 + 64;
for (n = 32; n != 0; n--) {
a0 = (*tBufLo++);
a1 = (*tBufLo++);
b0 = (*tBufHi++);
b1 = -(*tBufHi++);
delay[dOff0++] = (b0 - a0);
delay[dOff0++] = (b1 - a1);
delay[dOff1++] = (b0 + a0);
delay[dOff1++] = (b1 + a1);
}
QMFSynthesisConv((int *)cTabS, delay, dIdx, outbuf, nChans);
*delayIdx = (*delayIdx == NUM_QMF_DELAY_BUFS - 1 ? 0 : *delayIdx + 1);
}