Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RuntimeError #6

Open
Zhenxiaoan opened this issue Apr 22, 2024 · 1 comment
Open

RuntimeError #6

Zhenxiaoan opened this issue Apr 22, 2024 · 1 comment

Comments

@Zhenxiaoan
Copy link

(LLM) root@node1:~/Desktop/LLM/OpenMED/MIS-FM# python train.py demo/pctnet_scratch.cfg
dataset tensor_type float
dataset task_type seg
dataset root_dir /home/x/projects/PyMIC_project/PyMIC_examples/PyMIC_data/AtriaSeg/TrainingSet_crop
dataset train_csv demo/data/image_train.csv
dataset valid_csv demo/data/image_valid.csv
dataset test_csv demo/data/image_test.csv
dataset modal_num 1
dataset train_batch_size 2
dataset valid_batch_size 1
dataset patch_size [64, 128, 128]
dataset train_transform ['RandomCrop', 'NormalizeWithMeanStd', 'RandomFlip', 'LabelToProbability']
dataset valid_transform ['NormalizeWithMeanStd', 'LabelToProbability']
dataset test_transform ['NormalizeWithMeanStd']
dataset normalizewithmeanstd_channels [0]
dataset randomcrop_foreground_focus False
dataset randomcrop_foreground_ratio None
dataset randomcrop_mask_label None
dataset randomcrop_inverse False
dataset randomflip_flip_depth True
dataset randomflip_flip_height True
dataset randomflip_flip_width True
dataset randomflip_inverse False
dataset labeltoprobability_class_num 2
dataset labeltoprobability_inverse False
dataset randomcrop_output_size [64, 128, 128]
network net_type PCTNet
network class_num 2
network in_chns 1
network input_size [64, 128, 128]
network feature_chns [24, 48, 128, 256, 512]
network dropout [0, 0, 0.2, 0.2, 0.2]
network resolution_mode 1
network multiscale_pred True
training gpus [0]
training deep_supervise True
training loss_type ['DiceLoss', 'CrossEntropyLoss']
training loss_weight [0.5, 0.5]
training optimizer Adam
training learning_rate 0.001
training momentum 0.9
training weight_decay 1e-05
training lr_scheduler StepLR
training lr_gamma 0.5
training lr_step 4000
training early_stop_patience 10000
training ckpt_save_dir demo/model/pctnet_scratch
training iter_start 0
training iter_max 10000
training iter_valid 500
training iter_save 10000
testing gpus [0]
testing ckpt_mode 1
testing output_dir demo/result/pctnet_scratch
testing sliding_window_enable True
testing sliding_window_batch 8
testing sliding_window_size [64, 128, 128]
testing sliding_window_stride [32, 64, 64]
dataset tensor_type = float
dataset task_type = seg
dataset root_dir = /home/x/projects/PyMIC_project/PyMIC_examples/PyMIC_data/AtriaSeg/TrainingSet_crop
dataset train_csv = demo/data/image_train.csv
dataset valid_csv = demo/data/image_valid.csv
dataset test_csv = demo/data/image_test.csv
dataset modal_num = 1
dataset train_batch_size = 2
dataset valid_batch_size = 1
dataset patch_size = [64, 128, 128]
dataset train_transform = ['RandomCrop', 'NormalizeWithMeanStd', 'RandomFlip', 'LabelToProbability']
dataset valid_transform = ['NormalizeWithMeanStd', 'LabelToProbability']
dataset test_transform = ['NormalizeWithMeanStd']
dataset normalizewithmeanstd_channels = [0]
dataset randomcrop_foreground_focus = False
dataset randomcrop_foreground_ratio = None
dataset randomcrop_mask_label = None
dataset randomcrop_inverse = False
dataset randomflip_flip_depth = True
dataset randomflip_flip_height = True
dataset randomflip_flip_width = True
dataset randomflip_inverse = False
dataset labeltoprobability_class_num = 2
dataset labeltoprobability_inverse = False
dataset randomcrop_output_size = [64, 128, 128]
network net_type = PCTNet
network class_num = 2
network in_chns = 1
network input_size = [64, 128, 128]
network feature_chns = [24, 48, 128, 256, 512]
network dropout = [0, 0, 0.2, 0.2, 0.2]
network resolution_mode = 1
network multiscale_pred = True
training gpus = [0]
training deep_supervise = True
training loss_type = ['DiceLoss', 'CrossEntropyLoss']
training loss_weight = [0.5, 0.5]
training optimizer = Adam
training learning_rate = 0.001
training momentum = 0.9
training weight_decay = 1e-05
training lr_scheduler = StepLR
training lr_gamma = 0.5
training lr_step = 4000
training early_stop_patience = 10000
training ckpt_save_dir = demo/model/pctnet_scratch
training iter_start = 0
training iter_max = 10000
training iter_valid = 500
training iter_save = 10000
testing gpus = [0]
testing ckpt_mode = 1
testing output_dir = demo/result/pctnet_scratch
testing sliding_window_enable = True
testing sliding_window_batch = 8
testing sliding_window_size = [64, 128, 128]
testing sliding_window_stride = [32, 64, 64]
deterministric is true
/root/miniconda3/envs/LLM/lib/python3.9/site-packages/torch/functional.py:507: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /opt/conda/conda-bld/pytorch_1711403392949/work/aten/src/ATen/native/TensorShape.cpp:3549.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
parameter number 45287730
2024-04-22 12:50:54 training start
Traceback (most recent call last):
File "/root/Desktop/LLM/OpenMED/MIS-FM/train.py", line 46, in
main()
File "/root/Desktop/LLM/OpenMED/MIS-FM/train.py", line 43, in main
agent.run()
File "/root/miniconda3/envs/LLM/lib/python3.9/site-packages/pymic/net_run/agent_abstract.py", line 314, in run
self.train_valid()
File "/root/miniconda3/envs/LLM/lib/python3.9/site-packages/pymic/net_run/agent_seg.py", line 314, in train_valid
train_scalars = self.training()
File "/root/miniconda3/envs/LLM/lib/python3.9/site-packages/pymic/net_run/agent_seg.py", line 137, in training
data = next(self.trainIter)
File "/root/miniconda3/envs/LLM/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 631, in next
data = self._next_data()
File "/root/miniconda3/envs/LLM/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 1346, in _next_data
return self._process_data(data)
File "/root/miniconda3/envs/LLM/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 1372, in _process_data
data.reraise()
File "/root/miniconda3/envs/LLM/lib/python3.9/site-packages/torch/_utils.py", line 722, in reraise
raise exception
RuntimeError: Caught RuntimeError in DataLoader worker process 0.
Original Traceback (most recent call last):
File "/root/miniconda3/envs/LLM/lib/python3.9/site-packages/torch/utils/data/_utils/worker.py", line 308, in _worker_loop
data = fetcher.fetch(index)
File "/root/miniconda3/envs/LLM/lib/python3.9/site-packages/torch/utils/data/_utils/fetch.py", line 51, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/root/miniconda3/envs/LLM/lib/python3.9/site-packages/torch/utils/data/_utils/fetch.py", line 51, in
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/root/miniconda3/envs/LLM/lib/python3.9/site-packages/pymic/io/nifty_dataset.py", line 65, in getitem
image_dict = load_image_as_nd_array(image_full_name)
File "/root/miniconda3/envs/LLM/lib/python3.9/site-packages/pymic/io/image_read_write.py", line 79, in load_image_as_nd_array
image_dict = load_nifty_volume_as_4d_array(image_name)
File "/root/miniconda3/envs/LLM/lib/python3.9/site-packages/pymic/io/image_read_write.py", line 20, in load_nifty_volume_as_4d_array
img_obj = sitk.ReadImage(filename)
File "/root/miniconda3/envs/LLM/lib/python3.9/site-packages/SimpleITK/extra.py", line 375, in ReadImage
return reader.Execute()
File "/root/miniconda3/envs/LLM/lib/python3.9/site-packages/SimpleITK/SimpleITK.py", line 8430, in Execute
return _SimpleITK.ImageFileReader_Execute(self)
RuntimeError: Exception thrown in SimpleITK ImageFileReader_Execute: /tmp/SimpleITK/Code/IO/src/sitkImageReaderBase.cxx:97:
sitk::ERROR: The file "/home/x/projects/PyMIC_project/PyMIC_examples/PyMIC_data/AtriaSeg/TrainingSet_crop/BYSRSI3H4YTWKMM3MADP.nii.gz" does not exist.
How to fix it?

@taigw
Copy link
Collaborator

taigw commented Nov 17, 2024

From your error information, it seems that you have not set the path for training images correctly. Please see the latest readme file. You need to set train_dir in the configuration file correctly based on your own machine.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants