-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pather_main.py
267 lines (218 loc) · 10.2 KB
/
er_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import argparse
import torch.nn.functional as F
import numpy as np
from data import *
from mir import *
from utils import get_logger, get_temp_logger, logging_per_task
from buffer import Buffer
from copy import deepcopy
from pydoc import locate
from model import ResNet18, MLP
# Arguments
# -----------------------------------------------------------------------------------------
parser = argparse.ArgumentParser()
parser.add_argument('--result_dir', type=str, default='Results',
help='directory where we save results and samples')
parser.add_argument('-u', '--unit_test', action='store_true',
help='unit testing mode for fast debugging')
parser.add_argument('-d', '--dataset', type=str, default = 'split_mnist',
choices=['split_mnist', 'permuted_mnist', 'split_cifar10', 'split_cifar100', 'miniimagenet'])
parser.add_argument('--n_tasks', type=int, default=-1,
help='total number of tasks. -1 does default amount for the dataset')
parser.add_argument('-r','--reproc', type=int, default=1,
help='if on, no randomness in numpy and torch')
parser.add_argument('--disc_epochs', type=int, default=1)
parser.add_argument('--disc_iters', type=int, default=1,
help='number of training iterations for the classifier')
parser.add_argument('--batch_size', type=int, default=10)
parser.add_argument('--buffer_batch_size', type=int, default=10)
parser.add_argument('--use_conv', action='store_true')
parser.add_argument('--samples_per_task', type=int, default=-1,
help='if negative, full dataset is used')
parser.add_argument('--mem_size', type=int, default=600, help='controls buffer size')
parser.add_argument('--n_runs', type=int, default=1,
help='number of runs to average performance')
parser.add_argument('--suffix', type=str, default='',
help="name for logfile")
parser.add_argument('--subsample', type=int, default=50,
help="for subsampling in --method=replay, set to 0 to disable")
parser.add_argument('--print_every', type=int, default=500,
help="print metrics every this iteration")
parser.add_argument('--update_buffer_hid', type=int, default=1,
help='related to latent buffer')
# logging
parser.add_argument('-l', '--log', type=str, default='off', choices=['off', 'online'],
help='enable WandB logging')
parser.add_argument('--wandb_project', type=str, default='mir',
help='name of the WandB project')
#------ MIR -----#
parser.add_argument('-m','--method', type=str, default='no_rehearsal', choices=['no_rehearsal',
'rand_replay', 'mir_replay'])
parser.add_argument('--compare_to_old_logits', action='store_true',help='uses old logits')
parser.add_argument('--reuse_samples', type=int, default=0)
parser.add_argument('--lr', type=float, default=0.1)
args = parser.parse_args()
# Obligatory overhead
# -----------------------------------------------------------------------------------------
if not os.path.exists(args.result_dir): os.mkdir(args.result_dir)
sample_path = os.path.join(args.result_dir,'samples/')
if not os.path.exists(sample_path): os.mkdir(sample_path)
recon_path = os.path.join(args.result_dir,'reconstructions/')
if not os.path.exists(recon_path): os.mkdir(recon_path)
if args.suffix is not '':
import datetime
time_stamp = str(datetime.datetime.now().isoformat())
name_log_txt = args.dataset+'_'+time_stamp + str(np.random.randint(0, 1000)) + args.suffix
name_log_txt=name_log_txt +'.log'
with open(name_log_txt, "a") as text_file:
print(args, file=text_file)
else:
name_log_txt = None
args.cuda = torch.cuda.is_available()
args.device = 'cuda:0'
# argument validation
overlap = 0
#########################################
# TODO(Get rid of this or move to data.py)
args.ignore_mask = False
args.gen = False
args.newer = 2
#########################################
args.gen_epochs=0
args.output_loss = None
if args.reproc:
seed=0
torch.manual_seed(seed)
np.random.seed(seed)
# fetch data
data = locate('data.get_%s' % args.dataset)(args)
# make dataloaders
train_loader, val_loader, test_loader = [CLDataLoader(elem, args, train=t) \
for elem, t in zip(data, [True, False, False])]
if args.log != 'off':
import wandb
wandb.init(args.wandb_project)
wandb.config.update(args)
else:
wandb = None
# create logging containers
LOG = get_logger(['cls_loss', 'acc'],
n_runs=args.n_runs, n_tasks=args.n_tasks)
args.mem_size = args.mem_size*args.n_classes #convert from per class to total memory
# Train the model
# -----------------------------------------------------------------------------------------
for run in range(args.n_runs):
# REPRODUCTIBILITY
if args.reproc:
np.random.seed(run)
torch.manual_seed(run)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# CLASSIFIER
if args.use_conv:
model = ResNet18(args.n_classes, nf=20, input_size=args.input_size)
else:
model = MLP(args)
if args.cuda:
model = model.to(args.device)
opt = torch.optim.SGD(model.parameters(), lr=args.lr)
buffer = Buffer(args)
if run == 0:
print("number of classifier parameters:",
sum([np.prod(p.size()) for p in model.parameters()]))
print("buffer parameters: ", np.prod(buffer.bx.size()))
#----------
# Task Loop
for task, tr_loader in enumerate(train_loader):
sample_amt = 0
model = model.train()
#---------------
# Minibatch Loop
for i, (data, target) in enumerate(tr_loader):
if args.unit_test and i > 10: break
if sample_amt > args.samples_per_task > 0: break
sample_amt += data.size(0)
if args.cuda:
data, target = data.to(args.device), target.to(args.device)
#------ Train Classifier-------#
if i==0:
print('\n--------------------------------------')
print('Run #{} Task #{} --> Train Classifier'.format(
run, task))
print('--------------------------------------\n')
#---------------
# Iteration Loop
for it in range(args.disc_iters):
if args.method == 'no_rehearsal':
rehearse = False
else:
rehearse = task>0
model = retrieve_replay_update(args,
model, opt, data, target, buffer, task, tr_loader,rehearse=rehearse)
buffer.add_reservoir(data, target, None, task)
# ------------------------ eval ------------------------ #
model = model.eval()
eval_loaders = [('valid', val_loader), ('test', test_loader)]
for mode, loader_ in eval_loaders:
for task_t, te_loader in enumerate(loader_):
if task_t > task: break
LOG_temp = get_temp_logger(None, ['cls_loss', 'acc'])
# iterate over samples from task
for i, (data, target) in enumerate(te_loader):
if args.unit_test and i > 10: break
if args.cuda:
data, target = data.to(args.device), target.to(args.device)
logits = model(data)
if args.multiple_heads:
logits = logits.masked_fill(te_loader.dataset.mask == 0, -1e9)
loss = F.cross_entropy(logits, target)
pred = logits.argmax(dim=1, keepdim=True)
LOG_temp['acc'] += [pred.eq(target.view_as(pred)).sum().item() / pred.size(0)]
LOG_temp['cls_loss'] += [loss.item()]
logging_per_task(wandb, LOG, run, mode, 'acc', task, task_t,
np.round(np.mean(LOG_temp['acc']),2))
logging_per_task(wandb, LOG, run, mode, 'cls_loss', task, task_t,
np.round(np.mean(LOG_temp['cls_loss']),2))
print('\n{}:'.format(mode))
print(LOG[run][mode]['acc'])
# final run results
print('--------------------------------------')
print('Run #{} Final Results'.format(run))
print('--------------------------------------')
for mode in ['valid','test']:
final_accs = LOG[run][mode]['acc'][:,task]
logging_per_task(wandb, LOG, run, mode, 'final_acc', task,
value=np.round(np.mean(final_accs),2))
best_acc = np.max(LOG[run][mode]['acc'], 1)
final_forgets = best_acc - LOG[run][mode]['acc'][:,task]
logging_per_task(wandb, LOG, run, mode, 'final_forget', task,
value=np.round(np.mean(final_forgets[:-1]),2))
print('\n{}:'.format(mode))
print('final accuracy: {}'.format(final_accs))
print('average: {}'.format(LOG[run][mode]['final_acc']))
print('final forgetting: {}'.format(final_forgets))
print('average: {}\n'.format(LOG[run][mode]['final_forget']))
# final results
print('--------------------------------------')
print('--------------------------------------')
print('FINAL Results')
print('--------------------------------------')
print('--------------------------------------')
for mode in ['valid','test']:
final_accs = [LOG[x][mode]['final_acc'] for x in range(args.n_runs)]
final_acc_avg = np.mean(final_accs)
final_acc_se = 2*np.std(final_accs) / np.sqrt(args.n_runs)
final_forgets = [LOG[x][mode]['final_forget'] for x in range(args.n_runs)]
final_forget_avg = np.mean(final_forgets)
final_forget_se = 2*np.std(final_forgets) / np.sqrt(args.n_runs)
print('\nFinal {} Accuracy: {:.3f} +/- {:.3f}'.format(mode, final_acc_avg, final_acc_se))
print('\nFinal {} Forget: {:.3f} +/- {:.3f}'.format(mode, final_forget_avg, final_forget_se))
if name_log_txt is not None:
with open(name_log_txt, "a") as text_file:
print('\nFinal {} Accuracy: {:.3f} +/- {:.3f}'.format(mode, final_acc_avg, final_acc_se), file=text_file)
print('\nFinal {} Forget: {:.3f} +/- {:.3f}'.format(mode, final_forget_avg, final_forget_se), file=text_file)
if wandb is not None:
wandb.log({mode+'final_acc_avg':final_acc_avg})
wandb.log({mode+'final_acc_se':final_acc_se})
wandb.log({mode+'final_forget_avg':final_forget_avg})
wandb.log({mode+'final_forget_se':final_forget_se})