-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
447 lines (389 loc) · 15.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
'''
2d pose estimation handling
'''
from data.SLP_RD import SLP_RD
from data.SLP_FD import SLP_FD
import utils.vis as vis
import utils.utils as ut
import numpy as np
import opt
import cv2
import torch
import json
from os import path
import os
from utils.logger import Colorlogger
from utils.utils_tch import get_model_summary
from core.loss import JointsMSELoss
from torch.utils.data import DataLoader
from torch.optim import Adam
import time
from utils.utils_ds import accuracy, flip_back
from utils.visualizer import Visualizer
# opts outside?
opts = opt.parseArgs()
if 'depth' in opts.mod_src[0]: # the leading modalities, only depth use tight bb other raw image size
opts.if_bb = True # not using bb, give ori directly
else:
opts.if_bb = False #
exec('from model.{} import get_pose_net'.format(opts.model)) # pose net in
opts = opt.aug_opts(opts) # add necesary opts parameters to it
# opt.print_options(opts)
def train(loader, ds_rd, model, criterion, optimizer, epoch, n_iter=-1, logger=None, opts=None, visualizer=None):
'''
iter through epoch , return rst{'acc', loss'} each as list can be used outside for updating.
:param loader:
:param model:
:param criterion:
:param optimizer:
:param epoch: for print infor
:param n_iter: the iteration wanted, -1 for all iters
:param opts: keep some additional controls
:param visualizer: for visualizer
:return:
'''
batch_time = ut.AverageMeter()
data_time = ut.AverageMeter()
losses = ut.AverageMeter()
acc = ut.AverageMeter()
# switch to train mode
model.train()
end = time.time()
li_loss = []
li_acc = []
for i, inp_dct in enumerate(loader):
# get items
if i>=n_iter and n_iter>0: # break if iter is set and i is greater than that
break
input = inp_dct['pch']
target = inp_dct['hms'] # 14 x 64 x 1??
target_weight = inp_dct['joints_vis']
# measure data loading time weight, visible or not
data_time.update(time.time() - end)
# compute output
outputs = model(input) # no need to cuda it?
target = target.cuda(non_blocking=True)
target_weight = target_weight.cuda(non_blocking=True)
if isinstance(outputs, list): # list multiple stage version
loss = criterion(outputs[0], target, target_weight)
for output in outputs[1:]:
loss += criterion(output, target, target_weight)
else:
output = outputs
loss = criterion(output, target, target_weight)
# compute gradient and do update step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure accuracy and record loss
losses.update(loss.item(), input.size(0))
_, avg_acc, cnt, pred = accuracy(output.detach().cpu().numpy(),
target.detach().cpu().numpy()) # hm directly, with normalize with 1/10 dim, pck0.5, cnt: n_smp, pred
acc.update(avg_acc, cnt) # keep average acc
if visualizer and 0 == i % opts.update_html_freq: # update current result, get vis dict
n_jt = ds_rd.joint_num_ori
mod0 = opts.mod_src[0]
mean = ds_rd.means[mod0]
std = ds_rd.stds[mod0]
img_patch_vis = ut.ts2cv2(input[0], mean, std) # to CV BGR, mean std control channel detach inside
# pseudo change
cm = getattr(cv2, ds_rd.dct_clrMap[mod0])
img_patch_vis = cv2.applyColorMap(img_patch_vis, cm)[...,::-1] # RGB
# get pred
pred2d_patch = np.ones((n_jt, 3)) # 3rd for vis
pred2d_patch[:, :2] = pred[0] / opts.out_shp[0] * opts.sz_pch[1]
img_skel = vis.vis_keypoints(img_patch_vis, pred2d_patch, ds_rd.skels_idx)
hm_gt = target[0].cpu().detach().numpy().sum(axis=0) # HXW
hm_gt = ut.normImg(hm_gt)
hm_pred = output[0].detach().cpu().numpy().sum(axis=0)
hm_pred = ut.normImg(hm_pred)
img_cb = vis.hconcat_resize([img_skel, hm_gt, hm_pred])
vis_dict = {'img_cb': img_cb}
visualizer.display_current_results(vis_dict, epoch, False)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % opts.print_freq == 0:
msg = 'Epoch: [{0}][{1}/{2}]\t' \
'Time {batch_time.val:.3f}s ({batch_time.avg:.3f}s)\t' \
'Speed {speed:.1f} samples/s\t' \
'Data {data_time.val:.3f}s ({data_time.avg:.3f}s)\t' \
'Loss {loss.val:.5f} ({loss.avg:.5f})\t' \
'Accuracy {acc.val:.3f} ({acc.avg:.3f})'.format(
epoch, i, len(loader), batch_time=batch_time,
speed=input.size(0) / batch_time.val,
data_time=data_time, loss=losses, acc=acc)
logger.info(msg)
li_loss.append(losses.val) # the current loss
li_acc.append(acc.val)
return {'losses':li_loss, 'accs':li_acc}
def validate(loader, ds_rd, model, criterion, n_iter=-1, logger=None, opts=None, if_svVis=False, visualizer=None):
'''
loop through loder, all res, get preds and gts and normled dist.
With flip test for higher acc.
for preds, bbs, jts_ori, jts_weigth out, recover preds_ori, dists_nmd, pckh( dist and joints_vis filter, , print, if_sv then save all these
:param loader:
:param ds_rd: the reader, givens the length and flip pairs
:param model:
:param criterion:
:param optimizer:
:param epoch:
:param n_iter:
:param logger:
:param opts:
:return:
'''
batch_time = ut.AverageMeter()
losses = ut.AverageMeter()
acc = ut.AverageMeter()
# switch to evaluate mode
model.eval()
num_samples = ds_rd.n_smpl
n_jt = ds_rd.joint_num_ori
# to accum rst
preds_hm = []
bbs = []
li_joints_ori = []
li_joints_vis = []
li_l_std_ori = []
with torch.no_grad():
end = time.time()
for i, inp_dct in enumerate(loader):
# compute output
input = inp_dct['pch']
target = inp_dct['hms']
target_weight = inp_dct['joints_vis']
bb = inp_dct['bb']
joints_ori = inp_dct['joints_ori']
l_std_ori = inp_dct['l_std_ori']
if i>= n_iter and n_iter>0: # limiting iters
break
outputs = model(input)
if isinstance(outputs, list):
output = outputs[-1]
else:
output = outputs
output_ori = output.clone() # original output of original image
if opts.if_flipTest:
input_flipped = input.flip(3).clone() # flipped input
outputs_flipped = model(input_flipped) # flipped output
if isinstance(outputs_flipped, list):
output_flipped = outputs_flipped[-1]
else:
output_flipped = outputs_flipped
output_flipped_ori = output_flipped.clone() # hm only head changed? not possible??
output_flipped = flip_back(output_flipped.cpu().numpy(),
ds_rd.flip_pairs)
output_flipped = torch.from_numpy(output_flipped.copy()).cuda() # N x n_jt xh x w tch
# feature is not aligned, shift flipped heatmap for higher accuracy
if_shiftHM = True # no idea why
if if_shiftHM: # check original
# print('run shift flip')
output_flipped[:, :, :, 1:] = \
output_flipped.clone()[:, :, :, 0:-1]
output = (output + output_flipped) * 0.5
target = target.cuda(non_blocking=True)
target_weight = target_weight.cuda(non_blocking=True)
loss = criterion(output, target, target_weight)
num_images = input.size(0)
# measure accuracy and record loss
losses.update(loss.item(), num_images)
_, avg_acc, cnt, pred_hm = accuracy(output.cpu().numpy(),
target.cpu().numpy())
acc.update(avg_acc, cnt)
# preds can be furhter refined with subpixel trick, but it is already good enough.
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# keep rst
preds_hm.append(pred_hm) # already numpy, 2D
bbs.append(bb.numpy())
li_joints_ori.append(joints_ori.numpy())
li_joints_vis.append(target_weight.cpu().numpy())
li_l_std_ori.append(l_std_ori.numpy())
if if_svVis and 0 == i % opts.svVis_step:
sv_dir = opts.vis_test_dir # exp/vis/Human36M
# batch version
mod0 = opts.mod_src[0]
mean = ds_rd.means[mod0]
std = ds_rd.stds[mod0]
img_patch_vis = ut.ts2cv2(input[0], mean, std) # to CV BGR
img_patch_vis_flipped = ut.ts2cv2(input_flipped[0], mean, std) # to CV BGR
# pseudo change
cm = getattr(cv2,ds_rd.dct_clrMap[mod0])
img_patch_vis = cv2.applyColorMap(img_patch_vis, cm)
img_patch_vis_flipped = cv2.applyColorMap(img_patch_vis_flipped, cm)
# original version get img from the ds_rd , different size , plot ing will vary from each other
# warp preds to ori
# draw and save with index.
idx_test = i * opts.batch_size # image index
skels_idx = ds_rd.skels_idx
# get pred2d_patch
pred2d_patch = np.ones((n_jt, 3)) # 3rd for vis
pred2d_patch[:,:2] = pred_hm[0] / opts.out_shp[0] * opts.sz_pch[1] # only first
vis.save_2d_skels(img_patch_vis, pred2d_patch, skels_idx, sv_dir, suffix='-'+mod0,
idx=idx_test) # make sub dir if needed, recover to test set index by indexing.
# save the hm images. save flip test
hm_ori = ut.normImg(output_ori[0].cpu().numpy().sum(axis=0)) # rgb one
hm_flip = ut.normImg(output_flipped[0].cpu().numpy().sum(axis=0))
hm_flip_ori = ut.normImg(output_flipped_ori[0].cpu().numpy().sum(axis=0))
# subFd = mod0+'_hmFlip_ori'
# vis.save_img(hm_flip_ori, sv_dir, idx_test, sub=subFd)
# combined
# img_cb = vis.hconcat_resize([img_patch_vis, hm_ori, img_patch_vis_flipped, hm_flip_ori]) # flipped hm
# subFd = mod0+'_cbFlip'
# vis.save_img(img_cb, sv_dir, idx_test, sub=subFd)
if i % opts.print_freq == 0:
msg = 'Test: [{0}/{1}]\t' \
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' \
'Loss {loss.val:.4f} ({loss.avg:.4f})\t' \
'Accuracy {acc.val:.3f} ({acc.avg:.3f})'.format(
i, len(loader), batch_time=batch_time,
loss=losses, acc=acc)
logger.info(msg)
preds_hm = np.concatenate(preds_hm,axis=0) # N x n_jt x 2
bbs = np.concatenate(bbs, axis=0)
joints_ori = np.concatenate(li_joints_ori, axis=0)
joints_vis = np.concatenate(li_joints_vis, axis=0)
l_std_ori_all = np.concatenate(li_l_std_ori, axis=0)
preds_ori = ut.warp_coord_to_original(preds_hm, bbs, sz_out=opts.out_shp)
err_nmd = ut.distNorm(preds_ori, joints_ori, l_std_ori_all)
ticks = np.linspace(0,0.5,11) # 11 ticks
pck_all = ut.pck(err_nmd, joints_vis, ticks=ticks)
# save to plain format for easy processing
rst = {
'preds_ori':preds_ori.tolist(),
'joints_ori':joints_ori.tolist(),
'l_std_ori_all': l_std_ori_all.tolist(),
'err_nmd': err_nmd.tolist(),
'pck': pck_all.tolist()
}
return rst
def main():
# get logger
if_test = opts.if_test
if if_test:
log_suffix = 'test'
else:
log_suffix = 'train'
logger = Colorlogger(opts.log_dir, '{}_logs.txt'.format(log_suffix)) # avoid overwritting, will append
opt.set_env(opts)
opt.print_options(opts, if_sv=True)
n_jt = SLP_RD.joint_num_ori #
# get model
model = get_pose_net(in_ch=opts.input_nc, out_ch=n_jt) # why call it get c
# define loss function (criterion) and optimizer
criterion = JointsMSELoss( # try to not use weights
use_target_weight=True
).cuda()
# ds adaptor
SLP_rd_train = SLP_RD(opts, phase='train') # all test result
SLP_fd_train = SLP_FD(SLP_rd_train, opts, phase='train', if_sq_bb=True)
train_loader = DataLoader(dataset=SLP_fd_train, batch_size= opts.batch_size // len(opts.trainset),
shuffle=True, num_workers=opts.n_thread, pin_memory=opts.if_pinMem)
SLP_rd_test = SLP_RD(opts, phase=opts.test_par) # all test result # can test against all controled in opt
SLP_fd_test = SLP_FD(SLP_rd_test, opts, phase='test', if_sq_bb=True)
test_loader = DataLoader(dataset=SLP_fd_test, batch_size = opts.batch_size // len(opts.trainset),
shuffle=False, num_workers=opts.n_thread, pin_memory=opts.if_pinMem)
# for visualzier
if opts.display_id > 0:
visualizer = Visualizer(opts) # only plot losses here, a loss log comes with it,
else:
visualizer = None
# get optmizer
best_perf = 0.0
last_epoch = -1
optimizer = Adam(model.parameters(), lr=opts.lr)
checkpoint_file = os.path.join(
opts.model_dir, 'checkpoint.pth')
if 0 == opts.start_epoch or not path.exists(checkpoint_file): # from scratch
begin_epoch = 0 # either set or not exist all the same from 0
losses = [] # for tracking model performance.
accs= []
else: # get chk points
logger.info("=> loading checkpoint '{}'".format(checkpoint_file))
checkpoint = torch.load(checkpoint_file)
begin_epoch = checkpoint['epoch']
best_perf = checkpoint['perf']
last_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict']) # here should be cuda setting
losses = checkpoint['losses']
accs = checkpoint['accs']
optimizer.load_state_dict(checkpoint['optimizer'])
logger.info("=> loaded checkpoint '{}' (epoch {})".format(
checkpoint_file, checkpoint['epoch']))
milestones = opts.lr_dec_epoch
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones, opts.lr_dec_factor,
last_epoch=last_epoch
) # scheduler will be set to place given last from checkpoints
if opts.epoch_step > 0:
end_epoch = min(opts.end_epoch, opts.start_epoch + opts.epoch_step)
else:
end_epoch = opts.end_epoch
dump_input = torch.rand(
(1, opts.input_nc, opts.sz_pch[1], opts.sz_pch[0])
)
logger.info(get_model_summary(model, dump_input))
model = torch.nn.DataParallel(model, device_ids=opts.gpu_ids).cuda()
n_iter = opts.trainIter # only for test purpose quick test
if not if_test:
for epoch in range(begin_epoch,end_epoch):
if opts.display_id > 0:
visualizer.reset() # clean up the vis
# train for one epoch
rst_trn = train(train_loader, SLP_rd_train, model, criterion, optimizer, epoch, n_iter=n_iter, logger=logger, opts=opts, visualizer=visualizer)
losses += rst_trn['losses']
accs += rst_trn['accs']
# evaluate on validation set to update
rst_test = validate(
test_loader, SLP_rd_test, model, criterion,
n_iter=n_iter, logger=logger, opts=opts) # save preds, gt, preds_in ori, idst_normed to recovery, error here for last epoch?
pck_all = rst_test['pck']
perf_indicator = pck_all[-1][-1] # the last entry
pckh05 = np.array(pck_all)[:, -1] # the last indicies 15 x 11 last
titles_c = list(SLP_rd_test.joints_name[:SLP_rd_test.joint_num_ori]) + ['total']
ut.prt_rst([pckh05], titles_c, ['pckh0.5'], fn_prt=logger.info)
lr_scheduler.step() # new version updating here
if perf_indicator >= best_perf:
best_perf = perf_indicator
best_model = True
else:
best_model = False
logger.info('=> saving checkpoint to {}'.format(opts.model_dir))
ckp = {
'epoch': epoch + 1, # epoch to next, after finish 0 this is 1
'model': opts.model,
'state_dict': model.module.state_dict(),
'best_state_dict': model.module.state_dict(),
'perf': perf_indicator,
'optimizer': optimizer.state_dict(),
'losses': losses, # for later updating
'accs': accs,
}
torch.save(ckp, os.path.join(opts.model_dir, 'checkpoint.pth'))
if best_model:
torch.save(ckp, os.path.join(opts.model_dir, 'model_best.pth'))
# save directly, if statebest save another
final_model_state_file = os.path.join(
opts.model_dir, 'final_state.pth' # only after last iters
)
logger.info('=> saving final model state to {}'.format(
final_model_state_file)
)
torch.save(model.module.state_dict(), final_model_state_file)
# single test with loaded model, save the result
logger.info('----run final test----')
rst_test = validate(
test_loader, SLP_rd_test, model, criterion,
n_iter=n_iter, logger=logger, opts=opts, if_svVis=True) # save preds, gt, preds_in ori, idst_normed to recovery
pck_all = rst_test['pck']
# perf_indicator = pck_all[-1][-1] # last entry of list
pckh05 = np.array(pck_all)[:, -1] # why only 11 pck??
titles_c = list(SLP_rd_test.joints_name[:SLP_rd_test.joint_num_ori]) + ['total']
ut.prt_rst([pckh05], titles_c, ['pckh0.5'], fn_prt=logger.info)
pth_rst = path.join(opts.rst_dir, opts.nmTest + '.json')
with open(pth_rst, 'w') as f:
json.dump(rst_test, f)
if __name__ == '__main__':
main()