$ npm install
$ node main.js --help
Hello Classification
An example of image classification using inference-engine-node.
Options
-h, --help Show this help message and exit.
-m, --model string Required. Path to an .xml file with a trained model.
-i, --image string Required. Path to an image file.
-d, --device string Optional. Specify the target device to infer on; CPU, GPU, FPGA, HDDL, MYRIAD
or HETERO: is acceptable. Default value is CPU.
-n, --iterations number Optional. The number of iterations for inference. Default value is 1.
-k, --topk number Optional. The number of top results to show. Default value is 5.
-s, --sync Optional. Specify to inference synchronously or asynchronously. Default value
is false.
For example on Windows, run SqueezeNet on CPU plugin for 10 iterations:
$ node main.js -m ..\..\models\squeezenet1.1\FP16\squeezenet1.1.xml -i test.png -d CPU -n 10
Start.
-------------------------------------------
Check inference engine version:
API version: 2.1
Build: 37988
Description: API
-------------------------------------------
Start to create network from ..\..\models\squeezenet1.1\FP16\squeezenet1.1.xml.
Succeeded: read network took 7.13 ms.
Network name: squeezenet1.1
Input[0]:
name: data
precision: fp32
layout: nchw
dims: [1,3,227,227]
Output[0]:
name: prob
precision: fp32
layout: nchw
dims: [1,1000,1,1]
Change input layout to 'nhwc' and precision to 'u8'.
-------------------------------------------
Start to read image from test.png.
Succeeded.
-------------------------------------------
Check CPU plugin version:
Deivce Name: CPU
API version: 2.1
Build: 37988
Description: MKLDNNPlugin
Start to load network to CPU plugin.
Succeeded: load network took 147.38 ms.
-------------------------------------------
Start to infer asynchronously for 10 iterations.
Succeeded: the average inference time is 6.30 ms.
the throughput is 158.73 FPS.
The top 5 results:
classid probability label
------- ------- -------
387 0.998859 lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens
294 0.000253 brown bear, bruin, Ursus arctos
277 0.000243 red fox, Vulpes vulpes
278 0.000180 kit fox, Vulpes macrotis
298 0.000084 mongoose
-------------------------------------------
Done.