-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval.py
executable file
·373 lines (338 loc) · 13.3 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import json
import pickle
import os
import warnings
import torch
import torch.nn.functional as F
import numpy as np
import argparse
from tqdm import tqdm
from collections import defaultdict
# For extract noun
from konlpy.tag import Kkma
kkma = Kkma()
import pandas as pd
import nltk
#import kss
from ss.train_ss import build_ss_model
from rte.train_rte import build_rte_model
from transformers import BertTokenizer
class SS_Dataset(torch.utils.data.Dataset):
def __init__(self, anno_json, docs, tokenizer, max_length, k):
"""
Convert valid examples into BERT's input foramt.
"""
self.max_length = max_length
self.tokenizer = tokenizer
# Sentence tokenization for documents
#for doc in docs:
# sentences = kss.split_sentences(doc['context']) # Korean Sentence Splitter(kss)
# doc['sentences'] = sentences
print('Process SS dataloader')
self.data = []
for vidx, d in enumerate(anno_json):
candidates = []
for didx in d['dr_result'][:k]:
candidates += docs[didx]['context'].split('. ')
for c in candidates:
self.data.append((vidx, d['paraphrased'], c))
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
vidx, query, cand = self.data[idx]
meta = {'vidx': vidx, 'cand': cand}
sentence_b = self.tokenizer.tokenize(query)
sentence_a = self.tokenizer.tokenize(cand)
if len(sentence_a) + len(sentence_b) > self.max_length - 3: # 3 for [CLS], 2x[SEP]
#print(
# "The length of the input is longer than max_length! "
# f"sentence_a: {sentence_a} / sentence_b: {sentence_b}"
#)
# truncate sentence_b to fit in max_length
diff = (len(sentence_a) + len(sentence_b)) - (self.max_length - 3)
sentence_a = sentence_a[:-diff]
tokens = ["[CLS]"] + sentence_a + ["[SEP]"] + sentence_b + ["[SEP]"]
input_ids = self.tokenizer.convert_tokens_to_ids(tokens)
segment_ids = [0] * (len(sentence_a) + 2) + [1] * (len(sentence_b) + 1)
input_mask = [1] * len(input_ids)
# Zero-padding
padding = [0] * (self.max_length - len(input_ids))
input_ids += padding
segment_ids += padding
input_mask += padding
assert len(input_ids) == self.max_length
assert len(segment_ids) == self.max_length
assert len(input_mask) == self.max_length
return input_ids, segment_ids, input_mask, meta
def collate_fn(batch):
collections = list(zip(*batch))
for i in range(3):
collections[i] = torch.LongTensor(collections[i])
return collections
class RTE_Dataset(torch.utils.data.Dataset):
def __init__(self, anno_json, tokenizer, max_length, k):
"""
Convert valid examples into BERT's input foramt.
"""
self.max_length = max_length
self.tokenizer = tokenizer
print('Process RTE dataloader')
self.data = []
for vidx, d in enumerate(anno_json):
for sidx, (_, sent) in enumerate(d['ss_result'][:k]):
self.data.append((vidx, d['paraphrased'], sent, sidx))
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
vidx, query, cand, sidx = self.data[idx]
meta = {'vidx': vidx, 'sidx': sidx}
sentence_b = self.tokenizer.tokenize(query)
sentence_a = self.tokenizer.tokenize(cand)
if len(sentence_a) + len(sentence_b) + 3 > self.max_length: # 3 for [CLS], 2x[SEP]
#print(
# "The length of the input is longer than max_length! "
# f"sentence_a: {sentence_a} / sentence_b: {sentence_b}"
#)
# truncate sentence_b to fit in max_length
diff = (len(sentence_a) + len(sentence_b) + 3) - self.max_length
sentence_a = sentence_a[:-diff]
tokens = ["[CLS]"] + sentence_a + ["[SEP]"] + sentence_b + ["[SEP]"]
input_ids = self.tokenizer.convert_tokens_to_ids(tokens)
segment_ids = [0] * (len(sentence_a) + 2) + [1] * (len(sentence_b) + 1)
input_mask = [1] * len(input_ids)
# Zero-padding
padding = [0] * (self.max_length - len(input_ids))
input_ids += padding
segment_ids += padding
input_mask += padding
assert len(input_ids) == self.max_length
assert len(segment_ids) == self.max_length
assert len(input_mask) == self.max_length
return input_ids, segment_ids, input_mask, meta
# --- Document retrieval ---------------------
def document_retrieval(args, docs, anno_json):
result = []
for idx in tqdm(range(len(anno_json))):
paraphrased = anno_json[idx]['paraphrased']
NNs = set(kkma.nouns(paraphrased))
count = defaultdict(int)
for didx, doc in enumerate(docs):
ctx = doc['context']
ctx_set = set(doc['kkma_nouns'])
for nn in NNs:
if nn in ctx_set:
count[didx] += 1
count_list = list(count.items())
count_list.sort(key=lambda x: -1*x[1])
anno_json[idx]['dr_result'] = [didx for didx, _ in count_list[:5]]
def sentence_selection(args, docs, anno_json, tokenizer):
dataset = SS_Dataset(
anno_json,
docs,
tokenizer,
args.max_length,
args.k
)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batchsize,
shuffle=False,
num_workers=0,
drop_last=False,
collate_fn= collate_fn
)
print('Load checkpoint for SS')
ss_model = build_ss_model(args.cache_dir, num_labels=2)
ckpt = torch.load(os.path.join(args.ss_dir, 'best_ckpt.pth'))
ss_model.load_state_dict(ckpt['model_state'])
ss_model.cuda()
ss_model.eval()
results = defaultdict(list)
for input_ids, segment_ids, input_mask, metas in tqdm(dataloader, ncols=80):
input_ids = input_ids.cuda()
segment_ids = segment_ids.cuda()
input_mask = input_mask.cuda()
with torch.no_grad():
logits, = ss_model(
input_ids,
token_type_ids=segment_ids,
attention_mask=input_mask,
)
logits = F.softmax(logits, -1)
logit_cpu = logits.cpu()
for bidx, meta in enumerate(metas):
results[meta['vidx']].append((logit_cpu[bidx, 1].item(), meta['cand']))
# Save result
for vidx, d in enumerate(anno_json):
results[vidx].sort(key= lambda x: -1*x[0])
d['ss_result'] = results[vidx][:5]
def rte(args, anno_json, tokenizer):
dataset = RTE_Dataset(
anno_json,
tokenizer,
args.max_length,
args.k
)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batchsize,
shuffle=False,
num_workers=2,
drop_last=False,
collate_fn= collate_fn
)
print('Load checkpoint for RTE')
rte_model = build_rte_model(args.cache_dir, num_labels=3)
ckpt = torch.load(os.path.join(args.rte_dir, 'best_ckpt.pth'))
rte_model.load_state_dict(ckpt['model_state'])
rte_model.cuda()
rte_model.eval()
results = defaultdict(list)
for input_ids, segment_ids, input_mask, metas in tqdm(dataloader, ncols=80):
input_ids = input_ids.cuda()
segment_ids = segment_ids.cuda()
input_mask = input_mask.cuda()
with torch.no_grad():
logits, = rte_model(
input_ids,
token_type_ids=segment_ids,
attention_mask=input_mask,
)
logits = F.softmax(logits, -1)
logit_cpu = logits.cpu()
for bidx, meta in enumerate(metas):
results[meta['vidx']].append((logit_cpu[bidx], meta['sidx']))
# Save results
for vidx, d in enumerate(anno_json):
d['rte_result'] = results[vidx]
def main(args):
warnings.filterwarnings("ignore")
# Load documents
with open('./data/docs_noun.json', 'r') as f:
json_docs = json.load(f)
# prepare the dataset
with open('data/test_anno.json', 'r') as f:
val_json = json.load(f)
tmpdir = 'tmp'
if not os.path.exists(tmpdir):
os.makedirs(tmpdir)
# ------ Retrieve documents ------------------
if os.path.exists(tmpdir+'/eval_dr.json'):
with open(tmpdir+'/eval_dr.json', 'r') as f:
val_json = json.load(f)
else:
document_retrieval(args, json_docs, val_json)
with open(tmpdir+'/eval_dr.json', 'w') as f:
json.dump(val_json, f)
# Calculate recall
rank = []
for vidx, d in enumerate(val_json):
reference = d['context'].split(' ')
rank.append(99999)
for i, didx in enumerate(d['dr_result']):
hypothesis = json_docs[didx]['context'].split(' ')
#if json_docs[didx]['context'] == d['context']:
BLEUscore = nltk.translate.bleu_score.sentence_bleu([reference], hypothesis, weights=(0.5, 0.5))
if BLEUscore > 0.9:
rank[-1] = i+1
break
recall5 = sum([1 for x in rank if x <= 5])
recall1 = sum([1 for x in rank if x <= 1])
print('DR R@1', recall1 / len(val_json), 'R@5', recall5/len(val_json))
# ------ SS ---------------------------------
# Make sure to pass do_lower_case=False when use multilingual-cased model.
# See https://github.com/google-research/bert/blob/master/multilingual.md
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased',
do_lower_case=False)
if os.path.exists(tmpdir+'/eval_ss.json'):
with open(tmpdir+'/eval_ss.json', 'r') as f:
val_json = json.load(f)
else:
sentence_selection(args, json_docs, val_json, tokenizer)
with open(tmpdir+'/eval_ss.json', 'w') as f:
json.dump(val_json, f)
# Calculate recall
rank = []
for vidx, d in enumerate(val_json):
reference = d['reference'].split(' ')
for i, (_, sent) in enumerate(d['ss_result']):
hypothesis = sent.split(' ')
#if sent == d['reference']:
BLEUscore = nltk.translate.bleu_score.sentence_bleu([reference], hypothesis, weights=(0.5, 0.5))
if BLEUscore > 0.8:
rank.append(i+1)
break
recall5 = sum([1 for x in rank if x <= 5])
recall1 = sum([1 for x in rank if x <= 1])
print('SS R@1', recall1 / len(val_json), 'R@5', recall5/len(val_json))
# ------ RTE ------------------------------------
if os.path.exists(tmpdir+'/eval_rte.pkl'):
with open(tmpdir+'/eval_rte.pkl', 'rb') as f:
val_json = pickle.load(f)
else:
rte(args, val_json, tokenizer)
with open(tmpdir+'/eval_rte.pkl', 'wb') as f:
pickle.dump(val_json, f)
# Calculate accuracy
name2label = {'TRUE':0, 'FALSE':1, 'NEI':2}
acc = []
for vidx, d in enumerate(val_json):
gt = name2label[d['True_False']]
pred, norm = 0, 0
if len(d['rte_result']) == 0:
# No retrieved document in document retrieval
acc.append(0)
continue
for rte_logit, sidx in d['rte_result']:
pred += d['ss_result'][sidx][0] * rte_logit
norm += d['ss_result'][sidx][0]
pred = (pred / norm).argmax(0)
acc.append(float(pred == gt))
print('RTE Acc', sum(acc) / len(acc))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# arguments
parser.add_argument("--input_dir",
default="./data/",
type=str,
help="The input data dir."
)
parser.add_argument("--ss_dir",
default="./ss/checkpoints/",
type=str,
help="The checkpoint dir for ss"
)
parser.add_argument("--rte_dir",
default="./rte/checkpoints/",
type=str,
help="The checkpoint dir for rte"
)
parser.add_argument("--cache_dir",
default="./data/models/",
type=str,
help="Where do you want to store the pre-trained models"
"downloaded from pytorch pretrained model."
)
parser.add_argument("--batchsize",
default=8,
type=int,
help="Batch size for (positive) training examples."
)
parser.add_argument("--k",
default=5,
type=int,
help="Size of retrieval"
)
parser.add_argument("--seed",
default=42,
type=int,
help="random seed."
)
parser.add_argument("--max_length",
default=510,
type=int,
help="The maximum total input sequence length after tokenized."
"If longer than this, it will be truncated, else will be padded."
)
args = parser.parse_args()
main(args)