-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhypergraph.py
586 lines (452 loc) · 17.7 KB
/
hypergraph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
from base import *
from utils import *
class Simplex:
def __init__(self, nodes=[], simplex_data={}):
self.nodes_ = nodes
self.simplex_data = simplex_data
def __len__(self):
return len(self.nodes_)
def __repr__(self):
return '[{}]'.format(', '.join(map(str, self.nodes_)))
def __eq__(self, other):
return tuple(sorted(self.nodes_)) == tuple(sorted(other.nodes_))
def __hash__(self):
return hash(tuple(sorted(self.nodes_)))
def add_node(self, node):
self.nodes_.append(node)
def nodes(self):
for node in self.nodes_:
yield node
def set_attribute(self, key, val):
self.simplex_data[key] = val
def get_attribute(self, key):
return self.simplex_data.get(key, None)
def to_index(self, dtype=np.array):
return dtype(self.nodes_)
class Hypergraph:
def __init__(self):
self.nodes_ = collections.defaultdict(bool)
self.simplices = []
self.pointers = collections.defaultdict(list)
self.node_data = collections.defaultdict(dict)
self.degrees_ = collections.defaultdict(int)
self.simplex_sizes = collections.defaultdict(int)
def add_simplex_from_nodes(self, nodes, simplex_data={}):
simplex = Simplex(nodes=nodes, simplex_data=simplex_data)
self.add_simplex(simplex)
def add_simplex(self, simplex):
self.simplices.append(simplex)
self.simplex_sizes[len(simplex)] += 1
for node in simplex.nodes():
self.nodes_[node] = True
self.pointers[node].append(len(self.simplices) - 1)
self.degrees_[node] += 1
def __getitem__(self, node):
return self.node_data[node]
def set_attribute(self, node, key, value):
self.node_data[node][key] = value
def __setitem__(self, node, data):
assert(isinstance(data, dict))
self.node_data[node] = data
return data
def neighbors(self, node):
for pointer in self.pointers[node]:
yield self.simplices[pointer]
def degree(self, node):
return self.degrees_[node]
def degrees(self):
return np.array([self.degree(u) for u in self.nodes_])
def degrees_histogram(self, log=True):
if log:
return np.histogram(np.log(1 + self.degrees()), bins='auto')
else:
return np.histogram(self.degrees(), bins='auto')
def nodes(self):
for key in self.nodes_:
yield key
def simplices_iter(self):
for simplex in self.simplices:
yield simplex
def edges(self):
for simplex in self.simplices:
yield simplex
def nodes(self, data=False):
for node in self.nodes_:
if data:
yield node, self.node_data[node]
else:
yield node
def __len__(self):
return len(self.nodes_)
def num_simplices(self, separate=False, negate=False):
k_min = min(self.simplex_sizes.keys())
k_max = max(self.simplex_sizes.keys())
num_simplices = np.zeros(k_max - k_min + 1, dtype=int)
for k in range(k_min, k_max + 1):
num_simplices[k - k_min] = self.simplex_sizes[k]
if not negate:
if separate:
return num_simplices
else:
return num_simplices.sum()
else:
binomial_coeffs = binomial_coefficients(self.__len__(), k_max)
neg_num_simplices = binomial_coeffs[self.__len__(), k_min:(1 + k_max)] - num_simplices
if separate:
return neg_num_simplices
else:
return neg_num_simplices.sum()
def get_order_range(self):
return min(self.simplex_sizes.keys()), max(self.simplex_sizes.keys())
def get_field_range(self, field='timestamp'):
minimum = min([s.simplex_data.get(field, np.inf) for s in self.edges()])
maximum = max([s.simplex_data.get(field, -np.inf) for s in self.edges()])
return minimum, maximum
def simplices_to_list_of_lists(self):
for edge in self.edges():
yield edge.nodes_
@staticmethod
def graph_to_hypergraph(G):
H = Hypergraph()
for (u, v) in G.edges():
smp = Simplex([u, v])
H.add_simplex(smp)
return H
def set_node_attributes_to_graph(self, G):
nx.set_node_attributes(G, self.node_data, "data")
return G
def clique_decomposition(self, dtype=nx.Graph, weighted=True):
if dtype == nx.Graph:
G = nx.Graph()
else:
G = Hypergraph()
weights = collections.defaultdict(int)
for simplex in self.simplices:
for i in range(len(simplex.nodes_)):
for j in range(i):
weights[i, j] += 1
if dtype == nx.Graph:
G.add_edge(simplex.nodes_[i], simplex.nodes_[j])
else:
temp = Simplex([simplex.nodes_[i], simplex.nodes_[j]], simplex_data=simplex.simplex_data)
G.add_simplex(temp)
if dtype == nx.Graph:
G = self.set_node_attributes_to_graph(G)
for (u, v) in G.edges():
G[u][v]['weight'] = weights[i, j]
return G
else:
for u, data in self.nodes(data=True):
G[u] = copy.deepcopy(data)
for i in range(G.num_simplices()):
G.simplices[i].simplex_data['weight'] = weights[G.simplices[i].nodes_[0], G.simplices[i].nodes_[1]]
return G
def star_decomposition(self):
G = nx.Graph()
for simplex in self.simplices:
node_name = ','.join([str(node) for node in simplex.nodes()])
for u in simplex.nodes():
G.add_edge(u, node_name)
G = self.set_node_attributes_to_graph(G)
return G
def deduplicate(self):
H = Hypergraph()
edges = set([])
for e in self.edges():
edges |= {e}
for e in edges:
H.add_simplex(e)
for u, data in self.nodes(data=True):
H[u] = copy.deepcopy(data)
self = H
return self
def to_csr(self):
temp_indices = collections.defaultdict(list)
for simplex in self.simplices:
temp_indices[len(simplex)].append(simplex.nodes_)
csr = {}
for key in temp_indices:
coords = np.array(temp_indices[key]).T
data = 1
shape = tuple(key * [self.__len__(), ])
csr[key] = sparse.COO(coords=coords, data=data)
return csr
def to_dense(self):
self = Hypergraph.convert_node_labels_to_integers(self)
dense = {}
for edge in self.edges():
k = len(edge)
if dense.get(k, None) is None:
shape = tuple(k * [self.__len__()])
dense[k] = np.zeros(shape=shape)
dense[k][edge.to_index(dtype=tuple)] = 1
return dense
def edges_to_numpy_array(self):
numpy_edges = collections.defaultdict(list)
for edge in self.edges():
k = len(edge)
numpy_edges[k].append(edge.to_index(list))
for key, val in numpy_edges.items():
numpy_edges[key] = np.array(val).T
return numpy_edges
@staticmethod
def convert_node_labels_to_integers(H, mapping=None):
if isinstance(H, Hypergraph):
if mapping is None:
mapping = dict([(u, i) for i, u in enumerate(H.nodes())])
H_new = Hypergraph()
for edge in H.edges():
new_edge = [mapping[u] for u in edge.nodes()]
H_new.add_simplex_from_nodes(nodes=new_edge, simplex_data=copy.deepcopy(edge.simplex_data))
for u, data in H.nodes(data=True):
new_data = copy.deepcopy(data)
new_data['label'] = u
H_new[mapping[u]] = new_data
return H_new
elif isinstance(H, nx.Graph):
return nx.convert_node_labels_to_integers(H)
@staticmethod
def convert_node_labels_to_integers_with_field(H, field, sort=True, sort_col=0):
H = Hypergraph.convert_node_labels_to_integers(H, mapping=None)
feature_dim = len(next(H.nodes(data=True))[1][field])
values = np.zeros((len(H), feature_dim))
for u, data in H.nodes(data=True):
values[u] = data.get(field, np.nan * np.ones(feature_dim))
if sort:
ordering = np.argsort(-values[:, sort_col])
mapping = dict([(ordering[i], i) for i in range(values.shape[0])])
return Hypergraph.convert_node_labels_to_integers(H, mapping=mapping), values[ordering]
else:
return H, values
@staticmethod
def filter_by_field(H, field, minimum, maximum):
H_new = Hypergraph()
for e in H.edges():
if e.simplex_data.get(field, -np.inf) >= minimum and e.simplex_data.get(field, np.inf) <= maximum:
H_new.add_simplex(e)
# TODO copy node data
return H_new
def to_index(self, dtype=np.array):
if dtype == np.array:
M = self.num_simplices(separate=True).max()
lengths = [len(e) for e in self.edges()]
K_max = max(lengths)
K_min = min(lengths)
edges = - np.ones(shape=(K_max - K_min + 1, M, K_max), dtype=np.int64)
indexes = np.zeros(K_max - K_min + 1, dtype=int)
for i, edge in enumerate(self.edges()):
k = len(edge) - K_min
edges[k, indexes[k], 0:len(edge)] = edge.to_index(np.array)
indexes[k] += 1
elif dtype == list:
edges = []
for edge in self.edges():
edges.append(edge.to_index(list))
elif dtype == set:
edges = set([])
for edge in self.edges():
edges.add(tuple(sorted(edge.to_index(list))))
elif dtype == 'list-set':
edges = []
for edge in self.edges():
edges.append(edge.to_index(set))
return edges
def incidence_matrix(self):
H = Hypergraph.convert_node_labels_to_integers(self)
indexed = H.to_index(dtype=np.array)
A = np.zeros((indexed.shape[0], len(H)))
for m in range(self.num_simplices()):
A[m, indexed[m]] = 1
return A.T
def domination_curve(self, ordering):
x_axis = np.arange(0, 1 + len(ordering)).astype(np.float32)
y_axis = np.zeros(1 + len(ordering))
S = set([])
for i, v in enumerate(ordering):
S |= {v}
for p in self.pointers[v]:
for u in self.simplices[p].nodes_:
S |= {u}
y_axis[i + 1] = len(S)
y_axis = y_axis / y_axis.max()
x_axis = x_axis / x_axis.max()
return x_axis, y_axis
def core_profile(self, ordering, xi=lambda k: 1):
y_axis = np.zeros(len(ordering))
x_axis = 1 + np.arange(len(ordering)).astype(np.float32)
S = set([])
V = set(ordering)
simplices_set = self.to_index('list-set')
for i, v in enumerate(ordering):
S |= {v}
num, den = 0, 0
for simplex in simplices_set:
if simplex.issubset(S):
num += xi(len(simplex))
if len(S & simplex) > 0:
den += xi(len(simplex))
y_axis[i] = num / den
return x_axis, y_axis
def umhs(self, N):
S = set([])
perm = np.arange(0, self.num_simplices())
for i in range(N):
np.random.shuffle(perm)
S_temp = collections.defaultdict(bool)
S_temp_ordering = []
U = set([])
for j in perm:
if all([not S_temp[v] for v in self.simplices[j].nodes_]):
for v in self.simplices[j].nodes_:
S_temp[v] = True
S_temp_ordering.append(v)
U.add(v)
for p in self.pointers[v]:
for u in self.simplices[p].nodes_:
U.add(u)
if len(U) >= self.__len__():
break
if len(U) >= self.__len__():
break
U = set([])
i_stop = -1
for i, v in enumerate(S_temp_ordering, 1):
for p in self.pointers[v]:
for u in self.simplices[p].nodes_:
U.add(u)
if len(U) >= self.__len__():
i_stop = i
break
S_temp_ordering = set(S_temp_ordering[:i])
S = S | S_temp_ordering
return list(S)
def connected_components(self):
visited = collections.defaultdict(bool)
connected_components = []
for u in self.nodes():
if not visited[u]:
q = collections.deque([u])
visited[u] = True
S = set([])
while q:
current = q.popleft()
S.add(current)
for ptr in self.pointers[current]:
for v in self.simplices[ptr].nodes_:
if not visited[v]:
visited[v] = True
q.append(v)
connected_components.append((len(S), S))
return connected_components
def largest_connected_component(self):
_, LCC = max(self.connected_components(), key=lambda x: x[0])
return self.subhypergraph(LCC)
def filter_degrees(self, threshold=4):
S = set([])
for u in self.nodes_:
if self.degree(u) >= threshold:
S.add(u)
return self.subhypergraph(S)
def k_core(self, k=2):
degrees = copy.deepcopy(self.degrees_)
visited = collections.defaultdict(bool)
for u in self.nodes_:
if not visited[u]:
q = collections.deque([u])
while q:
current = q.pop()
visited[current] = True
for ptr in self.pointers[current]:
for v in self.simplices[ptr].nodes_:
if degrees[current] < k:
degrees[v] -= 1
if not visited[v]:
q.append(v)
S = set([])
for u in degrees.keys():
if degrees[u] >= k:
S.add(u)
for ptr in self.pointers[u]:
for v in self.simplices[ptr].nodes_:
if degrees[v] >= k:
S.add(v)
return self.subhypergraph(S)
def subhypergraph(self, S):
H = Hypergraph()
edges = []
for edge in self.simplices:
if set(edge.nodes_).issubset(S):
edges.append(edge)
for e in edges:
H.add_simplex(e)
for u, data in self.nodes(data=True):
H[u] = copy.deepcopy(data)
return H
def pagerank(self):
H = self.clique_decomposition(dtype=nx.Graph, weighted=True)
return nx.algorithms.link_analysis.pagerank(H, weight='weight')
def clique_graph_eigenvector(self):
H = self.clique_decomposition(dtype=nx.Graph, weighted=True)
return nx.eigenvector_centrality(H, weight='weight', max_iter=1000)
def borgatti_everett(self, max_iter=1000):
H = self.clique_decomposition(dtype=nx.Graph, weighted=False)
A = nx.to_numpy_array(H)
degrees = A.sum(-1)
c = np.random.rand(A.shape[0], 1)
c[degrees == 0] = 0
c /= np.linalg.norm(c)
c_prev = c
for _ in range(max_iter):
num = A @ c
den = np.sum(c**2) - c**2
c_prev = c
c = num / den
c /= np.linalg.norm(c)
if np.allclose(c, c_prev):
break
return c
def centrality_features(self):
n = self.__len__()
assert(list(sorted([u for u in self.nodes_])) == list(range(n)))
degrees_np = np.array([self.degree(u) for u in range(n)])
clique_eigenvector = self.clique_graph_eigenvector()
clique_eigenvector_np = np.array([clique_eigenvector[u] for u in range(n)])
pagerank = self.pagerank()
pagerank_np = np.array([pagerank[u] for u in range(n)])
return np.log(1 +np.vstack((degrees_np, clique_eigenvector_np, pagerank_np)).T)
def mns(H, s):
if isinstance(H, Hypergraph):
u0, v0 = random.choice(list(H.graph.edges()))
elif isinstance(H, nx.Graph):
u0, v0 = random.choice(list(H.edges()))
f = set([u0, v0])
while len(f) < s:
S = set([])
for u in f:
if isinstance(H, Hypergraph):
for v in H.graph.neighbors(u):
S |= {(u, v)}
elif isinstance(H, nx.Graph):
for v in H.neighbors(u):
S |= {(u, v)}
if len(S) == 0:
return mns(H, s)
else:
u, v = random.choice(list(S))
f |= {u, v}
return f
def cns(H, s):
f = set(random.choice(H.simplices).nodes)
v = random.choice(list(f))
while len(f) < s:
V = set([])
for u in f - {v}:
for smp in H.simplex_neighbors(u):
for w in smp.nodes:
V |= {w}
if len(V) == 0:
return cns(H, s)
else:
v1 = random.choice(list(V))
f = (f - {v}) | {v1}
return f