forked from jellydator/ttlcache
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcache.go
582 lines (481 loc) · 14.3 KB
/
cache.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
package ttlcache
import (
"container/list"
"context"
"fmt"
"sync"
"time"
"golang.org/x/sync/singleflight"
)
// Available eviction reasons.
const (
EvictionReasonDeleted EvictionReason = iota + 1
EvictionReasonCapacityReached
EvictionReasonExpired
)
// EvictionReason is used to specify why a certain item was
// evicted/deleted.
type EvictionReason int
// Cache is a synchronised map of items that are automatically removed
// when they expire or the capacity is reached.
type Cache[K comparable, V any] struct {
items struct {
mu sync.RWMutex
values map[K]*list.Element
// a generic doubly linked list would be more convenient
// (and more performant?). It's possible that this
// will be introduced with/in go1.19+
lru *list.List
expQueue expirationQueue[K, V]
timerCh chan time.Duration
}
metricsMu sync.RWMutex
metrics Metrics
events struct {
insertion struct {
mu sync.RWMutex
nextID uint64
fns map[uint64]func(*Item[K, V])
}
eviction struct {
mu sync.RWMutex
nextID uint64
fns map[uint64]func(EvictionReason, *Item[K, V])
}
}
stopCh chan struct{}
options options[K, V]
}
// New creates a new instance of cache.
func New[K comparable, V any](opts ...Option[K, V]) *Cache[K, V] {
c := &Cache[K, V]{
stopCh: make(chan struct{}),
}
c.items.values = make(map[K]*list.Element)
c.items.lru = list.New()
c.items.expQueue = newExpirationQueue[K, V]()
c.items.timerCh = make(chan time.Duration, 1) // buffer is important
c.events.insertion.fns = make(map[uint64]func(*Item[K, V]))
c.events.eviction.fns = make(map[uint64]func(EvictionReason, *Item[K, V]))
applyOptions(&c.options, opts...)
return c
}
// updateExpirations updates the expiration queue and notifies
// the cache auto cleaner if needed.
// Not concurrency safe.
func (c *Cache[K, V]) updateExpirations(fresh bool, elem *list.Element) {
var oldExpiresAt time.Time
if !c.items.expQueue.isEmpty() {
oldExpiresAt = c.items.expQueue[0].Value.(*Item[K, V]).expiresAt
}
if fresh {
c.items.expQueue.push(elem)
} else {
c.items.expQueue.update(elem)
}
newExpiresAt := c.items.expQueue[0].Value.(*Item[K, V]).expiresAt
// check if the closest/soonest expiration timestamp changed
if newExpiresAt.IsZero() || (!oldExpiresAt.IsZero() && !newExpiresAt.Before(oldExpiresAt)) {
return
}
d := time.Until(newExpiresAt)
// It's possible that the auto cleaner isn't active or
// is busy, so we need to drain the channel before
// sending a new value.
// Also, since this method is called after locking the items' mutex,
// we can be sure that there is no other concurrent call of this
// method
if len(c.items.timerCh) > 0 {
// we need to drain this channel in a select with a default
// case because it's possible that the auto cleaner
// read this channel just after we entered this if
select {
case d1 := <-c.items.timerCh:
if d1 < d {
d = d1
}
default:
}
}
// since the channel has a size 1 buffer, we can be sure
// that the line below won't block (we can't overfill the buffer
// because we just drained it)
c.items.timerCh <- d
}
// set creates a new item, adds it to the cache and then returns it.
// Not concurrency safe.
func (c *Cache[K, V]) set(key K, value V, ttl time.Duration) *Item[K, V] {
if ttl == DefaultTTL {
ttl = c.options.ttl
}
elem := c.get(key, false)
// return existing item if overwrite is disabled
if elem != nil && c.options.disableOverwriteOnSet {
c.updateExpirations(false, elem)
return elem.Value.(*Item[K, V])
}
if elem != nil {
// update/overwrite an existing item
item := elem.Value.(*Item[K, V])
item.update(value, ttl)
c.updateExpirations(false, elem)
return item
}
if c.options.capacity != 0 && uint64(len(c.items.values)) >= c.options.capacity {
// delete the oldest item
c.evict(EvictionReasonCapacityReached, c.items.lru.Back())
}
// create a new item
item := newItem(key, value, ttl)
elem = c.items.lru.PushFront(item)
c.items.values[key] = elem
c.updateExpirations(true, elem)
c.metricsMu.Lock()
c.metrics.Insertions++
c.metricsMu.Unlock()
c.events.insertion.mu.RLock()
for _, fn := range c.events.insertion.fns {
fn(item)
}
c.events.insertion.mu.RUnlock()
return item
}
// get retrieves an item from the cache and extends its expiration
// time if 'touch' is set to true.
// It returns nil if the item is not found or is expired.
// Not concurrency safe.
func (c *Cache[K, V]) get(key K, touch bool) *list.Element {
elem := c.items.values[key]
if elem == nil {
return nil
}
item := elem.Value.(*Item[K, V])
if item.isExpiredUnsafe() {
return nil
}
c.items.lru.MoveToFront(elem)
if touch && item.ttl > 0 {
item.touch()
c.updateExpirations(false, elem)
}
return elem
}
// evict deletes items from the cache.
// If no items are provided, all currently present cache items
// are evicted.
// Not concurrency safe.
func (c *Cache[K, V]) evict(reason EvictionReason, elems ...*list.Element) {
if len(elems) > 0 {
c.metricsMu.Lock()
c.metrics.Evictions += uint64(len(elems))
c.metricsMu.Unlock()
c.events.eviction.mu.RLock()
for i := range elems {
item := elems[i].Value.(*Item[K, V])
delete(c.items.values, item.key)
c.items.lru.Remove(elems[i])
c.items.expQueue.remove(elems[i])
for _, fn := range c.events.eviction.fns {
fn(reason, item)
}
}
c.events.eviction.mu.RUnlock()
return
}
c.metricsMu.Lock()
c.metrics.Evictions += uint64(len(c.items.values))
c.metricsMu.Unlock()
c.events.eviction.mu.RLock()
for _, elem := range c.items.values {
item := elem.Value.(*Item[K, V])
for _, fn := range c.events.eviction.fns {
fn(reason, item)
}
}
c.events.eviction.mu.RUnlock()
c.items.values = make(map[K]*list.Element)
c.items.lru.Init()
c.items.expQueue = newExpirationQueue[K, V]()
}
// Set creates a new item from the provided key and value, adds
// it to the cache and then returns it. If an item associated with the
// provided key already exists, the new item overwrites the existing one
// unless you opt to use the option `options.disableOverwriteOnSet` which will
// prevent overwrites
func (c *Cache[K, V]) Set(key K, value V, ttl time.Duration) *Item[K, V] {
c.items.mu.Lock()
defer c.items.mu.Unlock()
return c.set(key, value, ttl)
}
// Get retrieves an item from the cache by the provided key.
// Unless this is disabled, it also extends/touches an item's
// expiration timestamp on successful retrieval.
// If the item is not found, a nil value is returned.
func (c *Cache[K, V]) Get(key K, opts ...Option[K, V]) *Item[K, V] {
getOpts := options[K, V]{
loader: c.options.loader,
disableTouchOnHit: c.options.disableTouchOnHit,
}
applyOptions(&getOpts, opts...)
c.items.mu.Lock()
elem := c.get(key, !getOpts.disableTouchOnHit)
c.items.mu.Unlock()
if elem == nil {
c.metricsMu.Lock()
c.metrics.Misses++
c.metricsMu.Unlock()
if getOpts.loader != nil {
return getOpts.loader.Load(c, key)
}
return nil
}
c.metricsMu.Lock()
c.metrics.Hits++
c.metricsMu.Unlock()
return elem.Value.(*Item[K, V])
}
// Delete deletes an item from the cache. If the item associated with
// the key is not found, the method is no-op.
func (c *Cache[K, V]) Delete(key K) {
c.items.mu.Lock()
defer c.items.mu.Unlock()
elem := c.items.values[key]
if elem == nil {
return
}
c.evict(EvictionReasonDeleted, elem)
}
// DeleteAll deletes all items from the cache.
func (c *Cache[K, V]) DeleteAll() {
c.items.mu.Lock()
c.evict(EvictionReasonDeleted)
c.items.mu.Unlock()
}
// DeleteExpired deletes all expired items from the cache.
func (c *Cache[K, V]) DeleteExpired() {
c.items.mu.Lock()
defer c.items.mu.Unlock()
if c.items.expQueue.isEmpty() {
return
}
e := c.items.expQueue[0]
for e.Value.(*Item[K, V]).isExpiredUnsafe() {
c.evict(EvictionReasonExpired, e)
if c.items.expQueue.isEmpty() {
break
}
// expiration queue has a new root
e = c.items.expQueue[0]
}
}
// Touch simulates an item's retrieval without actually returning it.
// Its main purpose is to extend an item's expiration timestamp.
// If the item is not found, the method is no-op.
func (c *Cache[K, V]) Touch(key K) {
c.items.mu.Lock()
c.get(key, true)
c.items.mu.Unlock()
}
// Len returns the number of items in the cache.
func (c *Cache[K, V]) Len() int {
c.items.mu.RLock()
defer c.items.mu.RUnlock()
return len(c.items.values)
}
// Keys returns all keys currently present in the cache.
func (c *Cache[K, V]) Keys() []K {
c.items.mu.RLock()
defer c.items.mu.RUnlock()
res := make([]K, 0, len(c.items.values))
for k := range c.items.values {
res = append(res, k)
}
return res
}
// Items returns a copy of all items in the cache.
// It does not update any expiration timestamps.
func (c *Cache[K, V]) Items() map[K]*Item[K, V] {
c.items.mu.RLock()
defer c.items.mu.RUnlock()
items := make(map[K]*Item[K, V], len(c.items.values))
for k := range c.items.values {
item := c.get(k, false)
if item != nil {
items[k] = item.Value.(*Item[K, V])
}
}
return items
}
// Metrics returns the metrics of the cache.
func (c *Cache[K, V]) Metrics() Metrics {
c.metricsMu.RLock()
defer c.metricsMu.RUnlock()
return c.metrics
}
// Start starts an automatic cleanup process that
// periodically deletes expired items.
// It blocks until Stop is called.
func (c *Cache[K, V]) Start() {
waitDur := func() time.Duration {
c.items.mu.RLock()
defer c.items.mu.RUnlock()
if !c.items.expQueue.isEmpty() &&
!c.items.expQueue[0].Value.(*Item[K, V]).expiresAt.IsZero() {
d := time.Until(c.items.expQueue[0].Value.(*Item[K, V]).expiresAt)
if d <= 0 {
// execute immediately
return time.Microsecond
}
return d
}
if c.options.ttl > 0 {
return c.options.ttl
}
return time.Hour
}
timer := time.NewTimer(waitDur())
stop := func() {
if !timer.Stop() {
// drain the timer chan
select {
case <-timer.C:
default:
}
}
}
defer stop()
for {
select {
case <-c.stopCh:
return
case d := <-c.items.timerCh:
stop()
timer.Reset(d)
case <-timer.C:
c.DeleteExpired()
stop()
timer.Reset(waitDur())
}
}
}
// Stop stops the automatic cleanup process.
// It blocks until the cleanup process exits.
func (c *Cache[K, V]) Stop() {
c.stopCh <- struct{}{}
}
// OnInsertion adds the provided function to be executed when
// a new item is inserted into the cache. The function is executed
// on a separate goroutine and does not block the flow of the cache
// manager.
// The returned function may be called to delete the subscription function
// from the list of insertion subscribers.
// When the returned function is called, it blocks until all instances of
// the same subscription function return. A context is used to notify the
// subscription function when the returned/deletion function is called.
func (c *Cache[K, V]) OnInsertion(fn func(context.Context, *Item[K, V])) func() {
var (
wg sync.WaitGroup
ctx, cancel = context.WithCancel(context.Background())
)
c.events.insertion.mu.Lock()
id := c.events.insertion.nextID
c.events.insertion.fns[id] = func(item *Item[K, V]) {
wg.Add(1)
go func() {
fn(ctx, item)
wg.Done()
}()
}
c.events.insertion.nextID++
c.events.insertion.mu.Unlock()
return func() {
cancel()
c.events.insertion.mu.Lock()
delete(c.events.insertion.fns, id)
c.events.insertion.mu.Unlock()
wg.Wait()
}
}
// OnEviction adds the provided function to be executed when
// an item is evicted/deleted from the cache. The function is executed
// on a separate goroutine and does not block the flow of the cache
// manager.
// The returned function may be called to delete the subscription function
// from the list of eviction subscribers.
// When the returned function is called, it blocks until all instances of
// the same subscription function return. A context is used to notify the
// subscription function when the returned/deletion function is called.
func (c *Cache[K, V]) OnEviction(fn func(context.Context, EvictionReason, *Item[K, V])) func() {
var (
wg sync.WaitGroup
ctx, cancel = context.WithCancel(context.Background())
)
c.events.eviction.mu.Lock()
id := c.events.eviction.nextID
c.events.eviction.fns[id] = func(r EvictionReason, item *Item[K, V]) {
wg.Add(1)
go func() {
fn(ctx, r, item)
wg.Done()
}()
}
c.events.eviction.nextID++
c.events.eviction.mu.Unlock()
return func() {
cancel()
c.events.eviction.mu.Lock()
delete(c.events.eviction.fns, id)
c.events.eviction.mu.Unlock()
wg.Wait()
}
}
// Loader is an interface that handles missing data loading.
type Loader[K comparable, V any] interface {
// Load should execute a custom item retrieval logic and
// return the item that is associated with the key.
// It should return nil if the item is not found/valid.
// The method is allowed to fetch data from the cache instance
// or update it for future use.
Load(c *Cache[K, V], key K) *Item[K, V]
}
// LoaderFunc type is an adapter that allows the use of ordinary
// functions as data loaders.
type LoaderFunc[K comparable, V any] func(*Cache[K, V], K) *Item[K, V]
// Load executes a custom item retrieval logic and returns the item that
// is associated with the key.
// It returns nil if the item is not found/valid.
func (l LoaderFunc[K, V]) Load(c *Cache[K, V], key K) *Item[K, V] {
return l(c, key)
}
// SuppressedLoader wraps another Loader and suppresses duplicate
// calls to its Load method.
type SuppressedLoader[K comparable, V any] struct {
Loader[K, V]
group *singleflight.Group
}
// Load executes a custom item retrieval logic and returns the item that
// is associated with the key.
// It returns nil if the item is not found/valid.
// It also ensures that only one execution of the wrapped Loader's Load
// method is in-flight for a given key at a time.
func (l *SuppressedLoader[K, V]) Load(c *Cache[K, V], key K) *Item[K, V] {
// there should be a better/generic way to create a
// singleflight Group's key. It's possible that a generic
// singleflight.Group will be introduced with/in go1.19+
strKey := fmt.Sprint(key)
// the error can be discarded since the singleflight.Group
// itself does not return any of its errors, it returns
// the error that we return ourselves in the func below, which
// is also nil
res, _, _ := l.group.Do(strKey, func() (interface{}, error) {
item := l.Loader.Load(c, key)
if item == nil {
return nil, nil
}
return item, nil
})
if res == nil {
return nil
}
return res.(*Item[K, V])
}