forked from rakeshvar/rnn_ctc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscribe_hindu.py
executable file
·149 lines (128 loc) · 3.81 KB
/
scribe_hindu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/env python3
"""
'Scribe' a random numerical 'text' on to a 'slab'.
'text' - A sequence based on an alphabet [0, 1, 2 ...n_chars)
'slab' - An numpy matrix
Example:- The text [1, 0, 3, 5, 4, 2] can be written as
0¦ ¦
1¦ ██ ███ ██ ¦
2¦ █ █ █ █ █ ¦
3¦ █ ███ █ █ █ ¦
4¦ █ ██ █ █ █ █ █ █ ¦
5¦ █ █ █ ██ █ █ ████ ████ ¦
6¦ █ █ █ ███ █ ¦
7¦ ██ █ ¦
"""
import numpy as np
numbers_ = [
[
[0,1,1,0],
[1,0,0,1],
[1,0,0,1],
[0,1,1,0],
],
[
[1,1,0],
[0,1,0],
[0,1,0],
[1,1,1],
],
[
[0,1,1,0],
[1,0,0,1],
[0,0,1,0],
[0,1,0,0],
[1,1,1,1],
],
[
[0,1,1,0],
[1,0,0,1],
[0,0,1,0],
[1,0,0,1],
[0,1,1,0],
],
[
[0,0,1,0,0,1],
[0,1,0,0,1,0],
[1,1,1,1,0,0],
[0,0,1,0,0,0],
[0,1,0,0,0,0],
],
[
[1,1,1],
[1,0,0],
[1,1,1],
[0,0,1],
[1,0,1],
[1,1,1],
]
]
numbers = [np.asarray(num) for num in numbers_]
maxHt = max([num.shape[0] for num in numbers])
maxWd = max([num.shape[1] for num in numbers])
nChars = len(numbers)
class NumberScribe():
def __init__(self, avg_seq_len, noise=0., vbuffer=2, hbuffer=3,):
self.len = avg_seq_len
self.hbuffer = hbuffer
self.vbuffer = vbuffer
self.nDims = maxHt + vbuffer
self.noise = noise
def get_sample_length(self, vary):
return self.len + \
vary * (np.random.randint(self.len // 2) - self.len // 4)
def get_sample(self, vary):
length = self.get_sample_length(vary)
ret_x = np.zeros((self.nDims, length), dtype=float)
ret_y = []
ix = np.random.exponential(self.hbuffer) + self.hbuffer
while ix < length - self.hbuffer - maxWd:
char = np.random.randint(nChars)
ht, wd = numbers[char].shape
at_ht = np.random.randint(self.vbuffer + maxHt - ht + 1)
ret_x[at_ht:at_ht+ht, ix:ix+wd] += numbers[char]
ret_y += [char]
ix += wd + np.random.randint(self.hbuffer+1)
ret_x += self.noise * np.random.normal(size=ret_x.shape,)
ret_x = np.clip(ret_x, 0, 1)
return ret_x, ret_y
if __name__ == "__main__":
import pickle
import sys
from print_utils import slab_print
if len(sys.argv) < 2:
print('Usage \n'
'{} <out_file_name> [avg_sequence_len=30] [noise=0.0]'
'[variable_length=True]'.format(sys.argv[0]))
sys.exit()
out_file_name = sys.argv[1]
out_file_name += '.pkl' if not out_file_name.endswith('.pkl') else ''
try:
avg_seq_len = int(sys.argv[2])
except IndexError:
avg_seq_len = 30
try:
noise = float(sys.argv[3])
except IndexError:
noise = 0.0
try:
variable_len = sys.argv[4].lower() in ("yes", "true", "t", "1")
except IndexError:
variable_len = True
scribe = NumberScribe(avg_seq_len, noise)
xs = []
ys = []
for i in range(1000):
x, y = scribe.get_sample(variable_len)
xs.append(x)
ys.append(y)
print(y)
slab_print(x)
print('Output: {}\n'
'Char set size: {}\n'
'(Avg.) Len: {}\n'
'Varying Length: {}\n'
'Noise Level: {}'.format(
out_file_name, nChars, avg_seq_len, variable_len, noise))
with open(out_file_name, 'wb') as f:
pickle.dump({'x': xs, 'y': ys, 'nChars': nChars}, f, -1)