-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathconstprop.c
763 lines (668 loc) · 17.8 KB
/
constprop.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
// SPDX-License-Identifier: LGPL-2.1-or-later
/*
* Copyright (C) 2022 Paul Cercueil <[email protected]>
*/
#include "constprop.h"
#include "disassembler.h"
#include "lightrec-private.h"
#include <stdbool.h>
#include <string.h>
static u32 get_min_value(const struct constprop_data *d)
{
/* Min value: all sign bits to 1, all unknown bits but MSB to 0 */
return (d->value & d->known) | d->sign | (~d->known & BIT(31));
}
static u32 get_max_value(const struct constprop_data *d)
{
/* Max value: all sign bits to 0, all unknown bits to 1 */
return ((d->value & d->known) | ~d->known) & ~d->sign;
}
static u32 lightrec_same_sign(const struct constprop_data *d1,
const struct constprop_data *d2)
{
u32 min1, min2, max1, max2, a, b, c, d;
min1 = get_min_value(d1);
max1 = get_max_value(d1);
min2 = get_min_value(d2);
max2 = get_max_value(d2);
a = min1 + min2;
b = min1 + max2;
c = max1 + min2;
d = max1 + max2;
return ((a & b & c & d) | (~a & ~b & ~c & ~d)) & BIT(31);
}
static u32 lightrec_get_sign_mask(const struct constprop_data *d)
{
u32 imm;
if (d->sign)
return d->sign;
imm = (d->value & BIT(31)) ? d->value : ~d->value;
imm = ~(imm & d->known);
if (imm)
imm = 32 - clz32(imm);
return imm < 32 ? GENMASK(31, imm) : 0;
}
static void lightrec_propagate_addi(u32 rs, u32 rd,
const struct constprop_data *d,
struct constprop_data *v)
{
u32 end, bit, sum, min, max, mask, imm, value;
struct constprop_data result = {
.value = v[rd].value,
.known = v[rd].known,
.sign = v[rd].sign,
};
bool carry = false;
/* clear unknown bits to ease processing */
v[rs].value &= v[rs].known;
value = d->value & d->known;
mask = ~(lightrec_get_sign_mask(d) & lightrec_get_sign_mask(&v[rs]));
end = mask ? 32 - clz32(mask) : 0;
for (bit = 0; bit < 32; bit++) {
if (v[rs].known & d->known & BIT(bit)) {
/* the bits are known - compute the resulting bit and
* the carry */
sum = ((u32)carry << bit) + (v[rs].value & BIT(bit))
+ (value & BIT(bit));
if (sum & BIT(bit))
result.value |= BIT(bit);
else
result.value &= ~BIT(bit);
result.known |= BIT(bit);
result.sign &= ~BIT(bit);
carry = sum & BIT(bit + 1);
continue;
}
if (bit >= end) {
/* We're past the last significant bits of the values
* (extra sign bits excepted).
* The destination register will be sign-extended
* starting from here (if no carry) or from the next
* bit (if carry).
* If the source registers are not sign-extended and we
* have no carry, the algorithm is done here. */
if ((v[rs].sign | d->sign) & BIT(bit)) {
mask = GENMASK(31, bit);
if (lightrec_same_sign(&v[rs], d)) {
/* Theorical minimum and maximum values
* have the same sign; therefore the
* sign bits are known. */
min = get_min_value(&v[rs])
+ get_min_value(d);
max = get_max_value(&v[rs])
+ get_max_value(d);
/* The sum may have less sign bits */
if ((s32)min < 0)
mask &= min & max;
else
mask &= ~(min | mask);
result.value = (min & mask)
| (result.value & ~mask);
result.known |= mask << carry;
result.sign = 0;
} else {
/* min/max have different signs. */
result.sign = mask << 1;
result.known &= ~mask;
}
break;
} else if (!carry) {
/* Past end bit, no carry; we're done here. */
break;
}
}
result.known &= ~BIT(bit);
result.sign &= ~BIT(bit);
/* Found an unknown bit in one of the registers.
* If the carry and the bit in the other register are both zero,
* we can continue the algorithm. */
if (!carry && (((d->known & ~value)
| (v[rs].known & ~v[rs].value)) & BIT(bit)))
continue;
/* We have an unknown bit in one of the source registers, and we
* may generate a carry: there's nothing to do. Everything from
* this bit till the next known 0 bit or sign bit will be marked
* as unknown. The algorithm can then restart at the following
* bit. */
imm = (v[rs].known & d->known & ~v[rs].value & ~value)
| v[rs].sign | d->sign;
imm &= GENMASK(31, bit);
imm = imm ? ctz32(imm) : 31;
mask = GENMASK(imm, bit);
result.known &= ~mask;
result.sign &= ~mask;
bit = imm;
carry = false;
}
v[rd] = result;
}
static void lightrec_propagate_sub(u32 rs, u32 rt, u32 rd,
struct constprop_data *v)
{
struct constprop_data d = {
.value = ~v[rt].value,
.known = v[rt].known,
.sign = v[rt].sign,
};
u32 imm, mask, bit;
/* Negate the known Rt value, then propagate as a regular ADD. */
for (bit = 0; bit < 32; bit++) {
if (!(d.known & BIT(bit))) {
/* Unknown bit - mark bits unknown up to the next known 0 */
imm = (d.known & ~d.value) | d.sign;
imm &= GENMASK(31, bit);
imm = imm ? ctz32(imm) : 31;
mask = GENMASK(imm, bit);
d.known &= ~mask;
d.sign &= ~mask;
break;
}
if (!(d.value & BIT(bit))) {
/* Bit is 0: we can set our carry, and the algorithm is done. */
d.value |= BIT(bit);
break;
}
/* Bit is 1 - set to 0 and continue algorithm */
d.value &= ~BIT(bit);
}
lightrec_propagate_addi(rs, rd, &d, v);
}
static void lightrec_propagate_slt(u32 rs, u32 rd, bool is_signed,
const struct constprop_data *d,
struct constprop_data *v)
{
unsigned int bit;
if (is_signed && (v[rs].known & d->known
& (v[rs].value ^ d->value) & BIT(31))) {
/* If doing a signed comparison and the two bits 31 are known
* to be opposite, we can deduce the value. */
v[rd].value = v[rs].value >> 31;
v[rd].known = 0xffffffff;
v[rd].sign = 0;
return;
}
for (bit = 32; bit > 0; bit--) {
if (!(v[rs].known & d->known & BIT(bit - 1))) {
/* One bit is unknown and we cannot figure out which
* value is smaller. We still know that the upper 31
* bits are zero. */
v[rd].value = 0;
v[rd].known = 0xfffffffe;
v[rd].sign = 0;
break;
}
/* The two bits are equal - continue to the next bit. */
if (~(v[rs].value ^ d->value) & BIT(bit - 1))
continue;
/* The two bits aren't equal; we can therefore deduce which
* value is smaller. */
v[rd].value = !(v[rs].value & BIT(bit - 1));
v[rd].known = 0xffffffff;
v[rd].sign = 0;
break;
}
if (bit == 0) {
/* rs == rt and all bits are known */
v[rd].value = 0;
v[rd].known = 0xffffffff;
v[rd].sign = 0;
}
}
void lightrec_consts_propagate(const struct block *block,
unsigned int idx,
struct constprop_data *v)
{
const struct opcode *list = block->opcode_list;
union code c;
u32 imm, flags;
if (idx == 0)
return;
/* Register $zero is always, well, zero */
v[0].value = 0;
v[0].sign = 0;
v[0].known = 0xffffffff;
if (op_flag_sync(list[idx].flags)) {
memset(&v[1], 0, sizeof(*v) * 31);
return;
}
flags = list[idx - 1].flags;
if (idx > 1 && !op_flag_sync(flags)) {
if (op_flag_no_ds(flags))
c = list[idx - 1].c;
else
c = list[idx - 2].c;
switch (c.i.op) {
case OP_BNE:
/* After a BNE $zero + delay slot, we know that the
* branch wasn't taken, and therefore the other register
* is zero. */
if (c.i.rs == 0) {
v[c.i.rt].value = 0;
v[c.i.rt].sign = 0;
v[c.i.rt].known = 0xffffffff;
} else if (c.i.rt == 0) {
v[c.i.rs].value = 0;
v[c.i.rs].sign = 0;
v[c.i.rs].known = 0xffffffff;
}
break;
case OP_BLEZ:
v[c.i.rs].value &= ~BIT(31);
v[c.i.rs].known |= BIT(31);
fallthrough;
case OP_BEQ:
/* TODO: handle non-zero? */
break;
case OP_REGIMM:
switch (c.r.rt) {
case OP_REGIMM_BLTZ:
case OP_REGIMM_BLTZAL:
v[c.i.rs].value &= ~BIT(31);
v[c.i.rs].known |= BIT(31);
break;
case OP_REGIMM_BGEZ:
case OP_REGIMM_BGEZAL:
v[c.i.rs].value |= BIT(31);
v[c.i.rs].known |= BIT(31);
/* TODO: handle non-zero? */
break;
}
break;
default:
break;
}
}
c = list[idx - 1].c;
switch (c.i.op) {
case OP_SPECIAL:
switch (c.r.op) {
case OP_SPECIAL_SLL:
v[c.r.rd].value = v[c.r.rt].value << c.r.imm;
v[c.r.rd].known = (v[c.r.rt].known << c.r.imm)
| (BIT(c.r.imm) - 1);
v[c.r.rd].sign = v[c.r.rt].sign << c.r.imm;
break;
case OP_SPECIAL_SRL:
v[c.r.rd].value = v[c.r.rt].value >> c.r.imm;
v[c.r.rd].known = (v[c.r.rt].known >> c.r.imm)
| ((BIT(c.r.imm) - 1) << (32 - c.r.imm));
v[c.r.rd].sign = c.r.imm ? 0 : v[c.r.rt].sign;
break;
case OP_SPECIAL_SRA:
v[c.r.rd].value = (s32)v[c.r.rt].value >> c.r.imm;
v[c.r.rd].sign = (s32)(v[c.r.rt].sign
| (~v[c.r.rt].known & 0x80000000)) >> c.r.imm;
v[c.r.rd].known = (s32)v[c.r.rt].known >> c.r.imm;
break;
case OP_SPECIAL_SLLV:
if ((v[c.r.rs].known & 0x1f) == 0x1f) {
imm = v[c.r.rs].value & 0x1f;
v[c.r.rd].value = v[c.r.rt].value << imm;
v[c.r.rd].known = (v[c.r.rt].known << imm)
| (BIT(imm) - 1);
v[c.r.rd].sign = v[c.r.rt].sign << imm;
} else {
v[c.r.rd].known = 0;
v[c.r.rd].sign = 0;
}
break;
case OP_SPECIAL_SRLV:
if ((v[c.r.rs].known & 0x1f) == 0x1f) {
imm = v[c.r.rs].value & 0x1f;
v[c.r.rd].value = v[c.r.rt].value >> imm;
v[c.r.rd].known = (v[c.r.rt].known >> imm)
| ((BIT(imm) - 1) << (32 - imm));
if (imm)
v[c.r.rd].sign = 0;
} else {
v[c.r.rd].known = 0;
v[c.r.rd].sign = 0;
}
break;
case OP_SPECIAL_SRAV:
if ((v[c.r.rs].known & 0x1f) == 0x1f) {
imm = v[c.r.rs].value & 0x1f;
v[c.r.rd].value = (s32)v[c.r.rt].value >> imm;
v[c.r.rd].sign = (s32)(v[c.r.rt].sign
| (~v[c.r.rt].known & 0x80000000)) >> imm;
v[c.r.rd].known = (s32)v[c.r.rt].known >> imm;
} else {
v[c.r.rd].known = 0;
v[c.r.rd].sign = 0;
}
break;
case OP_SPECIAL_ADD:
case OP_SPECIAL_ADDU:
if (is_known_zero(v, c.r.rs))
v[c.r.rd] = v[c.r.rt];
else if (is_known_zero(v, c.r.rt))
v[c.r.rd] = v[c.r.rs];
else
lightrec_propagate_addi(c.r.rs, c.r.rd, &v[c.r.rt], v);
break;
case OP_SPECIAL_SUB:
case OP_SPECIAL_SUBU:
if (c.r.rs == c.r.rt) {
v[c.r.rd].value = 0;
v[c.r.rd].known = 0xffffffff;
v[c.r.rd].sign = 0;
} else {
lightrec_propagate_sub(c.r.rs, c.r.rt, c.r.rd, v);
}
break;
case OP_SPECIAL_AND:
v[c.r.rd].known = (v[c.r.rt].known & v[c.r.rs].known)
| (~v[c.r.rt].value & v[c.r.rt].known)
| (~v[c.r.rs].value & v[c.r.rs].known);
v[c.r.rd].value = v[c.r.rt].value & v[c.r.rs].value & v[c.r.rd].known;
v[c.r.rd].sign = v[c.r.rt].sign & v[c.r.rs].sign;
break;
case OP_SPECIAL_OR:
v[c.r.rd].known = (v[c.r.rt].known & v[c.r.rs].known)
| (v[c.r.rt].value & v[c.r.rt].known)
| (v[c.r.rs].value & v[c.r.rs].known);
v[c.r.rd].value = (v[c.r.rt].value | v[c.r.rs].value) & v[c.r.rd].known;
v[c.r.rd].sign = v[c.r.rt].sign & v[c.r.rs].sign;
break;
case OP_SPECIAL_XOR:
v[c.r.rd].value = v[c.r.rt].value ^ v[c.r.rs].value;
v[c.r.rd].known = v[c.r.rt].known & v[c.r.rs].known;
v[c.r.rd].sign = v[c.r.rt].sign & v[c.r.rs].sign;
break;
case OP_SPECIAL_NOR:
v[c.r.rd].known = (v[c.r.rt].known & v[c.r.rs].known)
| (v[c.r.rt].value & v[c.r.rt].known)
| (v[c.r.rs].value & v[c.r.rs].known);
v[c.r.rd].value = ~(v[c.r.rt].value | v[c.r.rs].value) & v[c.r.rd].known;
v[c.r.rd].sign = v[c.r.rt].sign & v[c.r.rs].sign;
break;
case OP_SPECIAL_SLT:
case OP_SPECIAL_SLTU:
lightrec_propagate_slt(c.r.rs, c.r.rd,
c.r.op == OP_SPECIAL_SLT,
&v[c.r.rt], v);
break;
case OP_SPECIAL_MULT:
case OP_SPECIAL_MULTU:
case OP_SPECIAL_DIV:
case OP_SPECIAL_DIVU:
if (OPT_FLAG_MULT_DIV && c.r.rd) {
v[c.r.rd].known = 0;
v[c.r.rd].sign = 0;
}
if (OPT_FLAG_MULT_DIV && c.r.imm) {
v[c.r.imm].known = 0;
v[c.r.imm].sign = 0;
}
break;
case OP_SPECIAL_MFLO:
case OP_SPECIAL_MFHI:
v[c.r.rd].known = 0;
v[c.r.rd].sign = 0;
break;
case OP_SPECIAL_JALR:
v[c.r.rd].known = 0xffffffff;
v[c.r.rd].sign = 0;
v[c.r.rd].value = block->pc + ((idx + 2) << 2);
break;
default:
break;
}
break;
case OP_META_MULT2:
case OP_META_MULTU2:
if (OPT_FLAG_MULT_DIV && c.r.rd) {
if (c.r.op < 32) {
v[c.r.rd].value = v[c.r.rs].value << c.r.op;
v[c.r.rd].known = (v[c.r.rs].known << c.r.op)
| (BIT(c.r.op) - 1);
v[c.r.rd].sign = v[c.r.rs].sign << c.r.op;
} else {
v[c.r.rd].value = 0;
v[c.r.rd].known = 0xffffffff;
v[c.r.rd].sign = 0;
}
}
if (OPT_FLAG_MULT_DIV && c.r.imm) {
if (c.r.op >= 32) {
v[c.r.imm].value = v[c.r.rs].value << (c.r.op - 32);
v[c.r.imm].known = (v[c.r.rs].known << (c.r.op - 32))
| (BIT(c.r.op - 32) - 1);
v[c.r.imm].sign = v[c.r.rs].sign << (c.r.op - 32);
} else if (c.i.op == OP_META_MULT2) {
v[c.r.imm].value = (s32)v[c.r.rs].value >> (32 - c.r.op);
v[c.r.imm].known = (s32)v[c.r.rs].known >> (32 - c.r.op);
v[c.r.imm].sign = (s32)v[c.r.rs].sign >> (32 - c.r.op);
} else {
v[c.r.imm].value = v[c.r.rs].value >> (32 - c.r.op);
v[c.r.imm].known = v[c.r.rs].known >> (32 - c.r.op);
v[c.r.imm].sign = v[c.r.rs].sign >> (32 - c.r.op);
}
}
break;
case OP_REGIMM:
break;
case OP_ADDI:
case OP_ADDIU:
if (c.i.imm) {
struct constprop_data d = {
.value = (s32)(s16)c.i.imm,
.known = 0xffffffff,
.sign = 0,
};
lightrec_propagate_addi(c.i.rs, c.i.rt, &d, v);
} else {
/* immediate is zero - that's just a register copy. */
v[c.i.rt] = v[c.i.rs];
}
break;
case OP_SLTI:
case OP_SLTIU:
{
struct constprop_data d = {
.value = (s32)(s16)c.i.imm,
.known = 0xffffffff,
.sign = 0,
};
lightrec_propagate_slt(c.i.rs, c.i.rt,
c.i.op == OP_SLTI, &d, v);
}
break;
case OP_ANDI:
v[c.i.rt].value = v[c.i.rs].value & c.i.imm;
v[c.i.rt].known = v[c.i.rs].known | ~c.i.imm;
v[c.i.rt].sign = 0;
break;
case OP_ORI:
v[c.i.rt].value = v[c.i.rs].value | c.i.imm;
v[c.i.rt].known = v[c.i.rs].known | c.i.imm;
v[c.i.rt].sign = (v[c.i.rs].sign & 0xffff) ? 0xffff0000 : v[c.i.rs].sign;
break;
case OP_XORI:
v[c.i.rt].value = v[c.i.rs].value ^ c.i.imm;
v[c.i.rt].known = v[c.i.rs].known;
v[c.i.rt].sign = (v[c.i.rs].sign & 0xffff) ? 0xffff0000 : v[c.i.rs].sign;
break;
case OP_LUI:
v[c.i.rt].value = c.i.imm << 16;
v[c.i.rt].known = 0xffffffff;
v[c.i.rt].sign = 0;
break;
case OP_CP0:
switch (c.r.rs) {
case OP_CP0_MFC0:
case OP_CP0_CFC0:
v[c.r.rt].known = 0;
v[c.r.rt].sign = 0;
break;
default:
break;
}
break;
case OP_CP2:
if (c.r.op == OP_CP2_BASIC) {
switch (c.r.rs) {
case OP_CP2_BASIC_MFC2:
switch (c.r.rd) {
case 1:
case 3:
case 5:
case 8:
case 9:
case 10:
case 11:
/* Signed 16-bit */
v[c.r.rt].known = 0;
v[c.r.rt].sign = 0xffff8000;
break;
case 7:
case 16:
case 17:
case 18:
case 19:
/* Unsigned 16-bit */
v[c.r.rt].value = 0;
v[c.r.rt].known = 0xffff0000;
v[c.r.rt].sign = 0;
break;
default:
/* 32-bit */
v[c.r.rt].known = 0;
v[c.r.rt].sign = 0;
break;
}
break;
case OP_CP2_BASIC_CFC2:
switch (c.r.rd) {
case 4:
case 12:
case 20:
case 26:
case 27:
case 29:
case 30:
/* Signed 16-bit */
v[c.r.rt].known = 0;
v[c.r.rt].sign = 0xffff8000;
break;
default:
/* 32-bit */
v[c.r.rt].known = 0;
v[c.r.rt].sign = 0;
break;
}
break;
}
}
break;
case OP_LB:
v[c.i.rt].known = 0;
v[c.i.rt].sign = 0xffffff80;
break;
case OP_LH:
v[c.i.rt].known = 0;
v[c.i.rt].sign = 0xffff8000;
break;
case OP_LBU:
v[c.i.rt].value = 0;
v[c.i.rt].known = 0xffffff00;
v[c.i.rt].sign = 0;
break;
case OP_LHU:
v[c.i.rt].value = 0;
v[c.i.rt].known = 0xffff0000;
v[c.i.rt].sign = 0;
break;
case OP_LWL:
case OP_LWR:
/* LWL/LWR don't write the full register if the address is
* unaligned, so we only need to know the low 2 bits */
if (v[c.i.rs].known & 0x3) {
imm = (v[c.i.rs].value & 0x3) * 8;
if (c.i.op == OP_LWL) {
imm = BIT(24 - imm) - 1;
v[c.i.rt].sign &= ~imm;
} else {
imm = imm ? GENMASK(31, 32 - imm) : 0;
v[c.i.rt].sign = 0;
}
v[c.i.rt].known &= imm;
break;
}
fallthrough;
case OP_LW:
case OP_META_LWU:
v[c.i.rt].known = 0;
v[c.i.rt].sign = 0;
break;
case OP_META:
switch (c.m.op) {
case OP_META_MOV:
v[c.m.rd] = v[c.m.rs];
break;
case OP_META_EXTC:
v[c.m.rd].value = (s32)(s8)v[c.m.rs].value;
if (v[c.m.rs].known & BIT(7)) {
v[c.m.rd].known = v[c.m.rs].known | 0xffffff00;
v[c.m.rd].sign = 0;
} else {
v[c.m.rd].known = v[c.m.rs].known & 0x7f;
v[c.m.rd].sign = 0xffffff80;
}
break;
case OP_META_EXTS:
v[c.m.rd].value = (s32)(s16)v[c.m.rs].value;
if (v[c.m.rs].known & BIT(15)) {
v[c.m.rd].known = v[c.m.rs].known | 0xffff0000;
v[c.m.rd].sign = 0;
} else {
v[c.m.rd].known = v[c.m.rs].known & 0x7fff;
v[c.m.rd].sign = 0xffff8000;
}
break;
case OP_META_COM:
v[c.m.rd].known = v[c.m.rs].known;
v[c.m.rd].value = ~v[c.m.rs].value;
v[c.m.rd].sign = v[c.m.rs].sign;
break;
default:
break;
}
break;
case OP_JAL:
v[31].known = 0xffffffff;
v[31].sign = 0;
v[31].value = block->pc + ((idx + 2) << 2);
break;
default:
break;
}
/* Reset register 0 which may have been used as a target */
v[0].value = 0;
v[0].sign = 0;
v[0].known = 0xffffffff;
}
enum psx_map
lightrec_get_constprop_map(const struct lightrec_state *state,
const struct constprop_data *v, u8 reg, s16 imm)
{
const struct lightrec_mem_map *map;
unsigned int i;
u32 min, max;
min = get_min_value(&v[reg]) + imm;
max = get_max_value(&v[reg]) + imm;
/* Handle the case where max + imm overflows */
if ((min & 0xe0000000) != (max & 0xe0000000))
return PSX_MAP_UNKNOWN;
pr_debug("Min: "X32_FMT" max: "X32_FMT" Known: "X32_FMT" Sign: "X32_FMT"\n",
min, max, v[reg].known, v[reg].sign);
min = kunseg(min);
max = kunseg(max);
for (i = 0; i < state->nb_maps; i++) {
map = &state->maps[i];
if (min >= map->pc && min < map->pc + map->length
&& max >= map->pc && max < map->pc + map->length)
return (enum psx_map) i;
}
return PSX_MAP_UNKNOWN;
}