-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbinery_indexed_tree.h
299 lines (269 loc) · 7.32 KB
/
binery_indexed_tree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/*
* binery-indexed-tree header.
* written by Shuangquan Li, [email protected]
* created on 2015-12-31
* latest edit on 2016-5-13 add two dimension's BIT2, BIT02
* latest edit on 2016-7-3 add modulo operations, madd, msum
* latest edit on 2016-8-6 add two new implements binary_indexed_tree ans binary_indexed_tree_2d.
*/
#ifndef __BINERY_INDEXED_TREE_H__
#define __BINERY_INDEXED_TREE_H__
#include <cassert>
#include <cstring>
#include <vector>
#include <functional>
template<typename T, typename Operator = std::plus<T>>
class binary_indexed_tree {
std::vector<T> __c;
Operator __op;
int __n;
public:
binary_indexed_tree() : __n(0) {}
binary_indexed_tree(int n, T v = 0) { __c.resize(n, v); __n = n; }
void clear() { __c.clear(); __n = 0; }
void fill(T v) { for (int i = 0; i < __n; ++i) __c[i] = v; }
void resize(int n, T v = 0) { __c.clear(); __c.resize(n, v); __n = n; }
int size() { return __n; }
void add(int x, T d) {
for (int i = x; i < __n; i |= i + 1)
__c[i] = __op(__c[i], d);
}
T accu(int x) {
T ret;
if (__op(1, 0) == 1) ret = 0;
else if (__op(1, 1) == 1) ret = 1;
else if (__op(1, T(-1)) == 1) ret = T(-1);
else assert(0);
for (int i = x; i >= 0; i = (i & i + 1) - 1)
ret = __op(ret, __c[i]);
return ret;
}
T accu(int l, int r) { return accu(r) - accu(l - 1); }
};
template<typename T, typename Operator = std::plus<T>>
class binary_indexed_tree_2d {
std::vector<std::vector<T>> __c;
Operator __op;
int __n, __m;
public:
binary_indexed_tree_2d() : __n(0), __m(0) {}
binary_indexed_tree_2d(int n, int m, T v = 0) {
__c.resize(n, std::vector<T>(m, v));
__n = n; __m = m;
}
void clear() { __c.clear(); __n = __m = 0; }
void fill(T v) {
for (int i = 0; i < __n; ++i)
for (int j = 0; j < __m; ++j)
__c[i][j] = v;
}
void resize(int n, int m, T v = 0) {
__c.clear();
__c.resize(n, std::vector<T>(m, v));
__n = n; __m = m;
}
std::pair<int, int> size() { return make_pair(__n, __m); }
void add(int x, int y, T d) {
for (int i = x; i < __n; i |= i + 1)
for (int j = y; j < __m; j |= j + 1)
__c[i][j] = __op(__c[i][j], d);
}
T accu(int x, int y) {
T ret;
if (__op(1, 0) == 1) ret = 0;
else if (__op(1, 1) == 1) ret = 1;
else if (__op(1, T(-1)) == 1) ret = T(-1);
else assert(0);
for (int i = x; i >= 0; i = (i & i + 1) - 1)
for (int j = y; j >= 0; j = (j & j + 1) - 1)
ret = __op(ret, __c[i][j]);
return ret;
}
T accu(int x1, int y1, int x2, int y2) {
return accu(x2, y2) + accu(x1 - 1, y1 - 1) - accu(x1 - 1, y2) - accu(x2, y1 - 1);
}
};
// 1 << 20 == 1048576 ~== 1e6
template<int n = 1048576, typename T = int> class BIT {
T c[n];
public:
BIT() { memset(c, 0, sizeof(c)); }
void clear() { memset(c, 0, sizeof(c)); }
int add(int i, T d) {
if (i <= 0) return -1;
for (; i < n; i += i & -i) c[i] += d;
return 0;
}
T sum(int i) {
T sum = 0;
for (; i > 0; i -= i & -i) sum += c[i];
return sum;
}
T sum(int l, int r) { return sum(r) - sum(l - 1); }
template<typename U>
int madd(int i, T d, U mod) {
if (i <= 0) return -1;
for (; i < n; i += i & -i) {
c[i] = (c[i] + d) % mod;
if (c[i] < 0) c[i] += mod;
}
return 0;
}
template<typename U>
T msum(int i, U mod) {
T sum = 0;
for (; i > 0; i -= i & -i) {
sum = (sum + c[i]) % mod;
if (sum < 0) sum += mod;
}
return sum;
}
template<typename U>
T msum(int l, int r, U mod) {
T ret = (msum(r) - msum(l - 1)) % mod;
if (ret < 0) ret += mod;
return ret;
}
};
template<int n = 1048576, typename T = int> class BIT0 {
T c[n];
public:
BIT0() { memset(c, 0, sizeof(c)); }
void clear() { memset(c, 0, sizeof(c)); }
int add(int i, T d) {
if (i < 0) return -1;
for (; i < n; i = i | (i + 1)) c[i] += d;
return 0;
}
T sum(int i) {
T sum = 0;
for (; i >= 0; i = (i & (i + 1)) - 1) sum += c[i];
return sum;
}
T sum(int l, int r) { return sum(r) - sum(l - 1); }
template<typename U>
int madd(int i, T d, U mod) {
if (i < 0) return -1;
for (; i < n; i = i | (i + 1)) {
c[i] = (c[i] + d) % mod;
if (c[i] < 0) c[i] += mod;
}
return 0;
}
template<typename U>
T msum(int i, U mod) {
T sum = 0;
for (; i >= 0; i = (i & (i + 1)) - 1) {
sum = (sum + c[i]) % mod;
if (sum < 0) sum += mod;
}
return sum;
}
template<typename U>
T msum(int l, int r, U mod) {
T ret = (msum(r) - msum(l - 1)) % mod;
if (ret < 0) ret += mod;
return ret;
}
};
// two dimension
template<int n = 1024, int m = n, typename T = int> class BIT2 {
T c[n][m];
public:
BIT2() { memset(c, 0, sizeof(c)); }
void clear() { memset(c, 0, sizeof(c)); }
int add(int x, int y, T d) {
if (x <= 0 || y <= 0) return -1;
for (int i = x; i < n; i += i & -i)
for (int j = y; j < m; j += j & -j)
c[i][j] += d;
return 0;
}
T sum(int x, int y) {
T sum = 0;
for (int i = x; i > 0; i -= i & -i)
for (int j = y; j > 0; j -= j & -j)
sum += c[i][j];
return sum;
}
T sum(int r1, int c1, int r2, int c2) {
return sum(r2, c2) + sum(r1 - 1, c1 - 1) - sum(r2, c1 - 1) - sum(r1 - 1, c2);
}
template<typename U>
int madd(int x, int y, T d, U mod) {
if (x <= 0 || y <= 0) return -1;
for (int i = x; i < n; i += i & -i)
for (int j = y; j < m; j += j & -j) {
c[i][j] = (c[i][j] + d) % mod;
if (c[i][j] < 0) c[i][j] += mod;
}
return 0;
}
template<typename U>
T msum(int x, int y, U mod) {
T sum = 0;
for (int i = x; i > 0; i -= i & -i)
for (int j = y; j > 0; j -= j & -j) {
sum = (sum + c[i]) % mod;
if (sum < 0) sum += mod;
}
return sum;
}
template<typename U>
T msum(int r1, int c1, int r2, int c2, U mod) {
T ret = (msum(r2, c2, mod) + msum(r1 - 1, c1 - 1, mod) - msum(r2, c1 - 1, mod) - msum(r1 - 1, c2, mod)) % mod;
if (ret < 0) ret += mod;
return ret;
}
};
template<int n = 1024, int m = n, typename T = int> class BIT02 {
T c[n][m];
public:
BIT02() { memset(c, 0, sizeof(c)); }
void clear() { memset(c, 0, sizeof(c)); }
int add(int x, int y, T d) {
if (x <= -1 || y <= -1) return -1;
for (int i = x; i < n; i |= i + 1)
for (int j = y; j < m; j |= j + 1)
c[i][j] += d;
return 0;
}
T sum(int x, int y) {
T sum = 0;
for (int i = x; i >= 0; i = (i & i + 1) - 1)
for (int j = y; j >= 0; j = (j & j + 1) - 1)
sum += c[i][j];
return sum;
}
T sum(int r1, int c1, int r2, int c2) {
return sum(r2, c2) + sum(r1 - 1, c1 - 1) - sum(r2, c1 - 1) - sum(r1 - 1, c2);
}
template<typename U>
int madd(int x, int y, T d, U mod) {
if (x <= -1 || y <= -1) return -1;
for (int i = x; i < n; i |= i + 1)
for (int j = y; j < m; j |= j + 1) {
c[i][j] = (c[i][j] + d) % mod;
if (c[i][j] < 0) c[i][j] += mod;
}
return 0;
}
template<typename U>
T msum(int x, int y, U mod) {
T sum = 0;
for (int i = x; i >= 0; i = (i & i + 1) - 1)
for (int j = y; j >= 0; j = (j & j + 1) - 1) {
sum = (sum + c[i]) % mod;
if (sum < 0) sum += mod;
}
return sum;
}
template<typename U>
T msum(int r1, int c1, int r2, int c2, U mod) {
T ret = (msum(r2, c2, mod) + msum(r1 - 1, c1 - 1, mod) - msum(r2, c1 - 1, mod) - msum(r1 - 1, c2, mod)) % mod;
if (ret < 0) ret += mod;
return ret;
}
};
/* eof */
#endif