-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmatrix.h
291 lines (266 loc) · 6.53 KB
/
matrix.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/*
* matrix header.
* written by Shuangquan Li, [email protected]
* created on 2016-4-18
* last edit on: 2016-5-30: add template matrix edition
*/
#ifndef __MATRIX_H__
#define __MATRIX_H__
#include "cil_config.h"
#include <cassert>
#include <cstring>
#include <string>
#include <initializer_list>
#include <iostream>
/* ******************************************************
f[0] = 0;
f[1] = 1;
f[2] = 1;
f[3] = 2;
f[4] = 3;
......
f[n] = f[n-1] + f[n-2]
matrix<2> fabonacci{ 0, 1, 1, 1 };
fabonacci = { 0 1 } = { f[0] f[1] }
fabonacci = { 1 1 } = { f[1] f[2] }
(fabonacci)^n = { f[n-1] f[n] }
(fabonacci)^n = { f[n] f[n+1] }
****************************************************** */
template<int N> class matrix {
long long a[N][N];
public:
matrix() { memset(a, 0, sizeof(a)); }
matrix(int u) {
memset(a, 0, sizeof(a));
for (int i = 0; i < N; ++i) a[i][i] = u;
}
matrix(long long u) {
memset(a, 0, sizeof(a));
for (int i = 0; i < N; ++i) a[i][i] = u;
}
matrix(const matrix& B) {
memcpy(a, B.a, sizeof(a));
}
#ifdef __cpp11
matrix(std::initializer_list<long long> il) {
assert(il.size() <= N * N);
int cnt = 0;
for (std::initializer_list<long long>::iterator it = il.begin(), e = il.end(); it != e; ++it) {
a[cnt / N][cnt % N] = *it;
++cnt;
}
}
#endif
~matrix() {}
void clear() { memset(a, 0, sizeof(a)); }
void unitize() {
memset(a, 0, sizeof(a));
for (int i = 0; i < N; ++i) a[i][i] = 1;
}
long long* operator [] (int r) { return a[r]; }
const long long* operator [] (int r) const { return a[r]; }
matrix operator *(const matrix& B) const {
matrix ret;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
ret[i][j] += a[i][k] * B[k][j];
return ret;
}
matrix& operator *= (const matrix& B) { return *this = (*this) * B; }
matrix pow(long long n) const {
matrix ret(1), x(*this);
while (n) {
if (n & 1) ret *= x;
x *= x;
n >>= 1;
}
return ret;
}
matrix mmul(const matrix& B, long long mod) const {
matrix ret;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
ret[i][j] = (ret[i][j] + a[i][k] * B[k][j] % mod) % mod;
return ret;
}
matrix mpow(long long n, long long mod) const {
matrix ret(1), x(*this);
while (n) {
if (n & 1) ret = ret.mmul(x, mod);
x = x.mmul(x, mod);
n >>= 1;
}
return ret;
}
};
template<int N>
inline std::ostream& operator <<(std::ostream& os, const matrix<N>& A) {
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N - 1; ++j) os << A[i][j] << " ";
os << A[i][N - 1] << "\n";
}
return os;
}
template<int N>
inline matrix<N> mmul(const matrix<N>& A, const matrix<N>& B, long long mod) {
matrix<N> ret;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
ret[i][j] = (ret[i][j] + A[i][k] * B[k][j] % mod) % mod;
return ret;
}
template<int N>
inline matrix<N> mpow(const matrix<N>& A, long long n, long long mod) {
matrix<N> ret(1), x(A);
while (n) {
if (n & 1) ret = mmul(ret, x, mod);
x = mmul(x, x, mod);
n >>= 1;
}
return ret;
}
#if 0
// old edition, should rewrite N value each time used.
class Matrix {
public:
static const int N = 2;
long long a[N][N];
Matrix();
Matrix(int u);
Matrix(const Matrix& B);
void clear();
void unitize();
long long* operator [] (int r);
const long long* operator [] (int r) const;
Matrix operator *(const Matrix& B) const;
Matrix& operator *= (const Matrix& B);
Matrix pow(long long n) const;
Matrix mpow(long long n, long long mod) const;
friend Matrix mmul(const Matrix& A, const Matrix& B, long long mod);
friend ostream& operator <<(ostream& os, const Matrix& A);
};
Matrix::Matrix() {
memset(a, 0, sizeof(a));
}
Matrix::Matrix(int u) {
memset(a, 0, sizeof(a));
for (int i = 0; i < N; ++i) a[i][i] = u;
}
Matrix::Matrix(const Matrix& B) {
memcpy(a, B.a, sizeof(B.a));
}
void Matrix::clear() {
memset(a, 0, sizeof(a));
}
void Matrix::unitize() {
memset(a, 0, sizeof(a));
for (int i = 0; i < N; ++i) a[i][i] = 1;
}
long long* Matrix::operator [] (int r) {
return a[r];
}
const long long* Matrix::operator [] (int r) const {
return a[r];
}
Matrix Matrix::operator *(const Matrix& B) const {
Matrix ret;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k) {
ret.a[i][j] += a[i][k] * B.a[k][j];
}
return ret;
}
Matrix& Matrix::operator *= (const Matrix& B) {
return *this = (*this) * B;
}
Matrix Matrix::pow(long long n) const {
Matrix ret(1), a(*this);
while (n) {
if (n & 1) ret *= a;
a *= a;
n >>= 1;
}
return ret;
}
Matrix Matrix::mpow(long long n, long long mod) const {
Matrix ret(1), a(*this);
while (n) {
if (n & 1) ret = mmul(ret, a, mod);
a = mmul(a, a, mod);
n >>= 1;
}
return ret;
}
inline Matrix mmul(const Matrix& A, const Matrix& B, long long mod) {
const int& N = A.N;
Matrix ret;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k) {
ret.a[i][j] = (ret.a[i][j] + A.a[i][k] * B.a[k][j] % mod) % mod;
}
return ret;
}
inline ostream& operator <<(ostream& os, const Matrix& A) {
for (int i = 0; i < A.N; ++i) {
for (int j = 0; j < A.N - 1; ++j)
os << A.a[i][j] << " ";
os << A.a[i][A.N - 1] << "\n";
}
return os;
}
#endif
#if 0
/**
* square matrix formed in template.
* T could be int, long long, double, etc.
* N > 0, denotes dimension of the matrix.
*/
template<typename T, int N>
class matrix {
public:
T a[N][N];
matrix() {
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
a[i][j] = 0;
}
matrix(T u) {
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
a[i][j] = i == j ? u : 0;
}
matrix(const matrix& B) {
memcpy(a, B.a, sizeof(B.a));
}
void clear() {
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
a[i][j] = 0;
}
void unitize() {
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
a[i][j] = i == j ? 1 : 0;
}
matrix operator *(const matrix& B) const {
matrix ret;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k) {
ret.a[i][j] += a[i][k] * B.a[k][j];
}
return ret;
}
matrix& operator *= (const matrix& B) {
return *this = (*this) * B;
}
//friend matrix mmul(const matrix& A, const matrix& B, int mod);
};
#endif
/* eof */
#endif