-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpotts_model.c
584 lines (511 loc) · 12.4 KB
/
potts_model.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
/**************************************************************************
* Potts Model 2D *
*************************************************************************/
/**************************************************************************
* INCLUDES *
*************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <string.h>
#include "mc.h"
/**************************************************************************
* DEFINITIONS *
*************************************************************************/
#define L 64
#define L2 (L*L)
#define J 1.
#define KB 1.
#define TRAN 100000
#define TMAX 1000000
/**************************************************************************
* GLOBAL VARIABLES *
*************************************************************************/
int M, ET;
double exp_factor;
/**************************************************************************
* FUNCTIONS *
*************************************************************************/
void initialize(int *spin, int **neigh, double *prob_met, double *prob_hb, int *hE, int **hM, int _Q, double TEMP);
void sweep_heatbath(int *spin, int **neigh, double *prob_hb, int _Q);
void sweep_metropolis(int *spin, int **neigh, double *prob_met, int _Q);
void states(int *spin, int **neigh, int *hE, int **hM, int choice, int step, int _Q);
void print_states(int *spin, double TEMP, int *hE, int **hM, int _Q, int choice);
void swendsen_wang_step(int *spin, int **neigh, int _Q);
void wolff_step(int *spin, int **neigh, int _Q);
void gnuplot_view(int tempo, int *s);
/**************************************************************************
* MAIN PROGRAM *
*************************************************************************/
int main(int argc, char *argv[])
{
int *spin, **neigh;
int *hE, **hM;
double *prob_met,*prob_hb;
int i, mcs;
int Q;
double TEMP;
// leio os parametros passados pela linha de comando
fprintf(stderr,"# argc: %d\n",argc);
if(argc==5)
{
for(i=1;i<argc;i++)
{
if(!strcmp(argv[i],"-Q"))
{
Q=atoi(argv[++i]);
}
else if(!strcmp(argv[i],"-T"))
{
TEMP=atof(argv[++i]);
}
else
{
fprintf(stderr,"Error. Argument '%s' is not recognized.\n", argv[i]);
exit(-1);
}
}
}
else
{
fprintf(stderr,"Error. Number of Arguments is wrong!!.\n");
exit(-1);
}
fprintf(stderr,"\n Simulacao do modelo de Potts com:\n");
fprintf(stderr," Lsize = %d\n",L);
fprintf(stderr," Q = %d\n",Q);
fprintf(stderr," Temp = %f\n",TEMP);
fprintf(stderr," Tc = %f\n\n",1./log(1.0+sqrt(Q)));
// fator pro SW
exp_factor = 1-exp(-1./TEMP);
// alocacao de matrizes 1D
spin = (int*)malloc(L2*sizeof(int));
prob_met = (double*)malloc(5*sizeof(double));
prob_hb = (double*)malloc(5*sizeof(double));
hE = (int*)malloc(TMAX*sizeof(int));
// alocacao de matrizes 2D
//
neigh = (int**)malloc(L2*sizeof(int*));
for(i=0; i<L2; i++)
{
neigh[i] = (int*)malloc(4*sizeof(int));
}
//
hM = (int**)malloc(TMAX*sizeof(int*));
for(i=0; i<TMAX; i++)
{
hM[i] = (int*)malloc(Q*sizeof(int));
}
// inicializo o RNG
seed = start_randomic();
initialize(spin, neigh, prob_met, prob_hb, hE, hM, Q, TEMP);
states(spin, neigh, hE, hM, 0, 0,Q);
for(mcs=0; mcs<TRAN; mcs++)
{
//sweep_heatbath(spin, neigh, prob_hb, Q);i
//sweep_metropolis(spin, neigh, prob_met, Q);
swendsen_wang_step(spin, neigh, Q);
//wolff_step(spin, neigh, Q);
states(spin, neigh, hE, hM, 0, mcs,Q);
#ifdef GNUPLOT
gnuplot_view(mcs,spin);
#endif
}
#ifdef DATA
char Arq[100];
FILE *arq;
sprintf(Arq, "potts_Q%d_T%lf_L%d_S%ld.dsf", Q, TEMP, L, seed);
arq = fopen(Arq, "w");
fprintf(arq, "#SEED: %ld\n#MCS\tM\tET\n", seed);
#endif
for(mcs=0; mcs<TMAX; mcs++)
{
//sweep_heatbath(spin, neigh, prob_hb, Q);
//sweep_metropolis(spin, neigh, prob_met, Q);
swendsen_wang_step(spin, neigh, Q);
//wolff_step(spin, neigh, Q);
states(spin, neigh, hE, hM, 1, mcs,Q);
#ifdef GNUPLOT
gnuplot_view(mcs,spin);
#endif
#ifdef DATA
fprintf(arq, "%d\t%d\t%d\n", mcs, M, ET);
#endif
}
print_states(spin, TEMP, hE, hM, Q, 0);
#ifdef DATA
fclose(arq);
#endif
// libero as matrizes alocadas 1D
free(spin);
free(prob_met);
free(prob_hb);
free(hE);
// libero as matrizes alocadas 2D
for(i=0; i<L2; i++)
{
free(neigh[i]);
}
free(neigh);
for(i=0; i<Q; i++)
{
free(hM[i]);
}
free(hM);
return 0;
}
/**************************************************************************
* INITIALIZATION *
*************************************************************************/
void initialize(int *spin, int **neigh, double *prob_met, double *prob_hb, int *hE, int **hM, int _Q, double TEMP)
{
int i,j;
// spins sempre aleatorios
for(i=0; i<L2; i++)
{
spin[i]=FRANDOM*_Q;
}
// spins sempre ordenados
for(i=0; i<L2; i++)
{
spin[i]=1;
}
// matriz de vizinhos
for(i=0; i<L2; i++)
{
neigh[i][0] = (i-L+L2)%L2; //up
neigh[i][1] = (i+1)%L + (i/L)*L; //right
neigh[i][2] = (i+L)%L2; //down
neigh[i][3] = (i-1+L)%L + (i/L)*L; //left
}
// matrizes series temporais
for(i=0; i<TMAX; i++)
{
hE[i] = 0;
for(j=0; j<_Q; j++)
{
hM[i][j] = 0;
}
}
// matriz de prob
for(i=0; i<5; i++)
{
prob_hb[i] = exp(i/TEMP);
prob_met[i] = exp(-i/TEMP);
}
return;
}
/**************************************************************************
* MONTE CARLO ROUTINE *
* Heat bath algorithm *
*************************************************************************/
void sweep_heatbath(int *spin, int **neigh, double *prob_hb, int _Q)
{
int site, i, j;
double ran, norm;
int howmany[_Q];
// MCS
for(i=0; i<L2; i++)
{
// escolho um sitio aleatorio
site = (int)(FRANDOM*L2);
// conto quantos dos seus vizinhos sao de cada Q
// inicializo
for(j=0; j<_Q; j++)
{
howmany[j] = 0;
}
// conto
++howmany[spin[neigh[site][0]]];
++howmany[spin[neigh[site][1]]];
++howmany[spin[neigh[site][2]]];
++howmany[spin[neigh[site][3]]];
// tower sampling
norm = 0.0;
// acumulo as probs
for(j=0; j<_Q; j++)
{
// chance maior de flipar para o estado mais presente nos vizinhos
norm += prob_hb[howmany[j]];
}
// posicao aleatoria na torre
ran = FRANDOM*norm;
// procuro a caixa correspondente a qual Q
for(j=0; j<_Q; j++)
{
if(ran < prob_hb[howmany[j]])
{
spin[site] = j;
break;
}
else
{
ran -= prob_hb[howmany[j]];
}
}
}
return;
}
/**************************************************************************
* MONTE CARLO ROUTINE *
* Metropolis algorithm *
*************************************************************************/
void sweep_metropolis(int *spin, int **neigh, double *prob_met, int _Q)
{
int site, i, j;
// double ran, norm;
int dQ,newspin,ssite,e0,ef,deltae;
// MCS
for(i=0; i<L2; i++)
{
// escolho um sitio aleatorio
site = (int)(FRANDOM*L2);
ssite = spin[site];
// escolho um novo Q
// acho que aleatorio funcio mas nao faz sentido
//newspin = FRANDOM*_Q;
dQ = (_Q-1)*FRANDOM; // supondo que nao gero o 1 !!!
//dQ = (_Q-2)*FRANDOM;
newspin = (spin[site] + 1 + dQ)%_Q;
//newspin = (ssite+1)%2;
if((newspin==_Q)||(newspin==ssite))
{
fprintf(stderr,"erro no newspin: %d %d (METROPOLIS)\n",newspin,dQ);
fprintf(stderr,"erro no newspin: %d %d (METROPOLIS)\n",newspin,ssite);
exit(-1);
}
// energia inicial e final
e0 = 0;
ef = 0;
for(j=0;j<4;j++)
{
e0 -= (ssite==spin[neigh[site][j]]);
ef -= (newspin==spin[neigh[site][j]]);
}
deltae = ef - e0;
if((deltae<=0)||(FRANDOM<prob_met[deltae]))
{
spin[site] = newspin;
//ET += deltae;
}
}
return;
}
/**************************************************************************
* STATES *
*************************************************************************/
void states(int *spin, int **neigh, int *hE, int **hM, int choice, int step, int _Q)
{
int i, j;
ET=0;
M=0;
if(choice == 1)
{
for(j=0; j<_Q; j++)
{
hM[step][j] = 0;
}
}
for(i=0; i<L2; i++)
{
// so o de baixo e o da direita
for(j=1; j<3; j++)
{
if(spin[i] == spin[neigh[i][j]])
{
ET--;
}
}
if(choice == 1)
{
hM[step][spin[i]]++;
}
// esse M nao esta fazendo sentido
M += spin[i];
}
// ET deveria ser dividido por 2
if(choice == 1)
{
hE[step] = ET;
}
return;
}
/**************************************************************************
* PRINT STATES *
*************************************************************************/
void print_states(int *spin, double TEMP, int *hE, int **hM, int _Q, int choice)
{
int i, j;
double mm, me;
mm = 0.0;
me = 0.0;
for(i=0; i<TMAX; i++)
{
mm += hM[i][0];//hM[i];
me += hE[i];
}
mm = (1.0)*mm;
me = (1.0)*me;
mm = mm/TMAX;
me = me/TMAX;
if(choice == 0)
{
char fp[100];
FILE *fp1;
sprintf(fp, "state_T%lfQ%dL%dS%ld.dsf", TEMP, _Q, L, seed);
fp1 = fopen(fp, "w");
for(i=0; i<L; i++)
{
for(j=0; j<L; j++)
{
fprintf(fp1, "%d ", spin[i + j*L]);
}
fprintf(fp1, "\n");
}
fclose(fp1);
}
else if(choice == 1)
{
char fp[100];
FILE *fp1;
sprintf(fp, "data_T%lfQ%dL%dM%.3lfE%.3lfS%ld.dsf",TEMP, _Q, L, mm, me,seed);
fp1 = fopen(fp, "w");
for(i=0; i<L2; i++)
{
fprintf(fp1, "%d ", spin[i]);
}
fclose(fp1);
}
return;
}
/**************************************************************************
* SWENDSEN WANG *
*************************************************************************/
void swendsen_wang_step(int *spin, int **neigh, int _Q)
{
int i, j, k;
unsigned long *label;
signed int *flip;
double temp;
label = malloc(L2*sizeof(unsigned long));
flip = malloc(L2*sizeof(signed int));
for(i=0; i<L2; i++)
{
label[i] = i;
flip[i] = -1;
}
for(i=0; i<L2; i++)
{
if( (spin[i]==spin[neigh[i][1]]) && (FRANDOM < exp_factor) )
{
unionfind(i,neigh[i][1],label);
}
if( (spin[i]==spin[neigh[i][2]]) && (FRANDOM < exp_factor) )
{
unionfind(i,neigh[i][2],label);
}
}
for(i=0; i<L2; i++)
{
j = i;
while(label[j] != j)
{
j = label[j];
}
if(flip[j] == -1)
{
temp = FRANDOM;
for(k=0; k<_Q; k++)
{
if(temp<1./_Q)
{
flip[j] = k;
break;
}
else
{
temp -= 1./_Q;
}
}
}
spin[i] = flip[j];
}
free(label);
free(flip);
return;
}
/**************************************************************************
* WOLFF *
* baseado no isng do barkema *
* conferir se esta certo pro potts.. *
*************************************************************************/
void wolff_step(int *spin, int **neigh, int _Q) {
int i,j,sp,oldspin,newspin,current,nn,dQ,dQ1;
int stack[L2];
// escolho um spin, coloco na pilha e flipo ele
i = FRANDOM*L2;
stack[0] = i;
sp = 1;
oldspin = spin[i];
//newspin = -spin[i];//(Qi + 1 + (Q-2)*FRANDOM)%Q
//newspin = spin[i] + (1 + (_Q-1)*FRANDOM)%_Q; // Q-1 ou Q-2 ?
dQ1 = (_Q-1)*FRANDOM;
dQ = (spin[i] + 1 + dQ1)%_Q; // testar se esta voltando pro Q original
//newspin = spin[i] + dQ;
newspin = dQ;
if(newspin==_Q) {
fprintf(stderr,"erro no newspin: %d %d %d (WOLFF)\n",newspin,dQ,dQ1);
exit(-1);
}
spin[i] = newspin;
//gnuplot_view(sp,spin);
while(sp) {
// pego um sitio da pilha
// e diminuo o indice sp depois de pegar o valor
current = stack[--sp];
// confere os vizinhos
for(j=0;j<4;j++) {
nn = neigh[current][j];
// posso juntar as duas condicoes. faz diferenca?
if(spin[nn]==oldspin) {
if(FRANDOM<exp_factor) {
// coloco no proximo indice da pilha
stack[sp++] = nn;
// atualizo o estado do vizinho. dessa forma nao pode entrar
// na pilha novamente ja que tem estado newspin
spin[nn] = newspin;
//gnuplot_view(sp,spin);
}
}
}
}
//
//gnuplot_view(sp,spin);
//
return;
}
/**************************************************************************
* Visualization routine *
* compile with: -DGNUPLOT *
* use as: ./a.out | gnuplot *
*************************************************************************/
void gnuplot_view(int tempo, int *s)
{
int i,j,sitio;
printf("set title \'tempo: %d \' \n",tempo);
printf("set size square\n");
printf("plot \'-\' matrix with image\n");
for(j=0;j<L;j++)
{
for(i=0;i<L;i++)
{
sitio = i+j*L;
printf(" %d",s[sitio]);
}
printf("\n");
}
printf("e\n pause 0.05\n");
printf("\n\n");
return;
}