forked from EduardoArle/big_data_biogeography
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwed_ancestral_areas_DEC.Rmd
155 lines (128 loc) · 5.21 KB
/
wed_ancestral_areas_DEC.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
---
output: html_document
---
```{r global_options, include=FALSE}
knitr::opts_chunk$set(fig.width=12, fig.height=8, eval = FALSE,
echo=TRUE, warning=FALSE, message=FALSE,
tidy = TRUE, collapse = TRUE,
results = 'hold')
```
In this exercise you will run the Dispersal-Extinction-Cladogenesis model using the BioGeoBEARS R package.
# Library setup
```{r}
library(tidyverse)
library(ape)
library(geiger)
library(optimx) # You need to have some version of optimx available
library(FD) # for FD::maxent() (make sure this is up-to-date)
library(snow) # (if you want to use multicore functionality; some systems/R versions prefer library(parallel), try either)
library(parallel)
library(devtools)
library(rexpokit)
library(cladoRcpp)
library(BioGeoBEARS)
library(stringr)
library(RColorBrewer)
library(colorspace)
library(jpeg)
library(viridis)
```
# Tutorial
This script is mostly absed on the example script by the developer of BioGeoBEARS, available at http://phylo.wikidot.com/biogeobears.
## Prepare the tree file
If your tree is in nexus format, you need to convert it to newick format, otherwise you can jus specify the file apth
```{r}
#specify the tree file
trfn <- "example_data/bombacoideae_phylogeny.newick"
tr <- read.tree(trfn)
```
## Define the geography file
```{r}
geogfn <- "example_data/bombacoideae_biome_classification.txt"
# Look at your geographic range data:
tipranges = getranges_from_LagrangePHYLIP(lgdata_fn=geogfn)
```
## Set up the DEC model
```{r}
BioGeoBEARS_run_object = define_BioGeoBEARS_run()
# set the maximum number of areas. If you have many areas, you can set the maximum number of areas a species can occur in simultaneously. One possibility is to set this to the number of areas of the most widespread recent species.
max_range_size = 5
numstates_from_numareas(numareas=5, maxareas=5, include_null_range=TRUE)
# Set some operators for the default DEC model
BioGeoBEARS_run_object$trfn = trfn
BioGeoBEARS_run_object$geogfn = geogfn
BioGeoBEARS_run_object$max_range_size = max_range_size
BioGeoBEARS_run_object$min_branchlength = 0.000001 # fix issues with zero-branch lengths
BioGeoBEARS_run_object$include_null_range = TRUE
BioGeoBEARS_run_object$speedup = TRUE
BioGeoBEARS_run_object$use_optimx = 'GenSA' # if FALSE, use optim() instead of optimx()
BioGeoBEARS_run_object$num_cores_to_use = 4 # if parallel computing is not available this will default to 1
BioGeoBEARS_run_object$force_sparse = FALSE
BioGeoBEARS_run_object = readfiles_BioGeoBEARS_run(BioGeoBEARS_run_object)
BioGeoBEARS_run_object$return_condlikes_table = TRUE
BioGeoBEARS_run_object$calc_TTL_loglike_from_condlikes_table = TRUE
BioGeoBEARS_run_object$calc_ancprobs = TRUE # get ancestral states from optim run
runslow = TRUE
```
## Define the output path
```{r}
resfn = "example_data/bombacoideae_DEC_results.Rdata"
```
## Check if the the input is alright
```{r}
check_BioGeoBEARS_run(BioGeoBEARS_run_object)
```
## Run the DEC model
```{r}
resDEC = bears_optim_run(BioGeoBEARS_run_object)
```
## Save outputs to disk
```{r}
# Save the result file
save(resDEC, file=resfn)
# Save the node states for visualization
resDEC$ML_marginal_prob_each_state_at_branch_top_AT_node
trtable = prt(tr, printflag=FALSE)
areas = getareas_from_tipranges_object(tipranges)
states_list_0based = rcpp_areas_list_to_states_list(areas=areas, maxareas=max_range_size, include_null_range=TRUE)
# Make the list of ranges
ranges_list = NULL
for (i in 1:length(states_list_0based))
{
if ( (length(states_list_0based[[i]]) == 1) && (is.na(states_list_0based[[i]])) )
{
tmprange = "_"
} else {
tmprange = paste(areas[states_list_0based[[i]]+1], collapse="")
}
ranges_list = c(ranges_list, tmprange)
}
range_probabilities = as.data.frame(resDEC$ML_marginal_prob_each_state_at_branch_top_AT_node)
row.names(range_probabilities) = trtable$node
names(range_probabilities) = ranges_list
# Write the table to a tab-delimited text file (for Excel etc.)
write.table(range_probabilities, file="example_data/bombacoideae_DEC_node_probabilities.txt",
row.names = F, quote=FALSE, sep="\t")
```
## Visualization
```{r}
analysis_titletxt ="BioGeoBEARS DEC"
# Setup
results_object = resDEC
scriptdir = np(system.file("extdata/a_scripts", package="BioGeoBEARS"))
# A plot of ancestral states
res2 = plot_BioGeoBEARS_results(results_object, analysis_titletxt,
addl_params=list("j"), plotwhat="text",
label.offset=2, tipcex=0.7, statecex=0.6,
splitcex=0.6, titlecex=0.8, plotsplits=F,
cornercoords_loc=scriptdir, include_null_range=TRUE,
tr=tr, tipranges=tipranges, plotlegend = T)
# showing pie charts for each node with the probabilities
plot_BioGeoBEARS_results(results_object, analysis_titletxt,
addl_params=list("j"), plotwhat="pie",
label.offset=2, tipcex=0.7, statecex=0.7,
splitcex=0.6, titlecex=0.8, plotsplits=F,
cornercoords_loc=scriptdir, include_null_range=TRUE,
tr=tr, tipranges=tipranges)
```
Done!