-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathAUTHORS
100 lines (78 loc) · 3.38 KB
/
AUTHORS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
Recursive Zonal Equal Area (EQ) Sphere Partitioning Toolbox.
Release 1.12 2024-10-20
Copyright 2024 Paul Leopardi
Release 1.10 2005-06-26
Copyright 2004-2005 Paul Leopardi for the University of New South Wales.
AUTHORS
For licensing, see COPYING.
For revision history, see CHANGELOG.
Origin
------
Maple and Matlab code is based on Ed Saff [SafSP], [Saf03]
and Ian Sloan [Slo03].
References
----------
[Dahl78] B. E. J. Dahlberg,
"On the distribution of Fekete points",
Duke Math. J. 45 (1978), no. 3, pp. 537--542.
[KuiS98]: A. B. J. Kuijlaars, E. B. Saff,
"Asymptotics for minimal discrete energy on the sphere",
Transactions of the American Mathematical Society, v. 350 no. 2 (Feb 1998)
pp. 523--538.
[KuiSS04]: A. B. J. Kuijlaars, E. B. Saff, X. Sun,
"On separation of minimal Riesz energy points on spheres in Euclidean spaces."
Journal of computational and applied mathematics 199.1 (2007): 172-180.
[LeGS01]: T. Le Gia, I. H. Sloan,
"The uniform norm of hyperinterpolation on the unit sphere in an arbitrary
number of dimensions", Constructive Approximation (2001) 17: p249-265.
[Leo06]: P. Leopardi,
"A partition of the unit sphere into regions of equal area and small diameter",
Electronic Transactions on Numerical Analysis, Volume 25, 2006, pp. 309-327.
[Leo07]: P. Leopardi,
"Distributing points on the sphere: Partitions, separation, quadrature and energy",
PhD thesis, UNSW, 2007.
[Leo09]: P. Leopardi,
"Diameter bounds for equal area partitions of the unit sphere",
Electronic Transactions on Numerical Analysis, Volume 35, 2009, pp. 1-16.
[Leo24]: P. Leopardi,
"The applicability of equal area partitions of the unit sphere",
Journal of Approximation Software, 1(2), 2024.
[Mue98]: C. Mueller,
"Analysis of spherical symmetries in Euclidean spaces",
Springer, 1998.
[RakSZ94]: E. A. Rakhmanov, E. B. Saff, Y. M. Zhou,
"Minimal discrete energy on the sphere",
Mathematics Research Letters, 1 (1994), pp. 647--662.
[RakSZ95]: E. A. Rakhmanov, E. B. Saff, Y. M. Zhou,
"Electrons on the sphere",
Computational methods and function theory 1994 (Penang), pp. 293--309,
Ser. Approx. Decompos., 5, World Sci. Publishing, River Edge, NJ, 1995.
[SafK97]: E. B. Saff, A. B. J. Kuijlaars,
"Distributing many points on a sphere",
Mathematical Intelligencer, v19 no1 (1997), pp. 5--11.
[SafSP]: E. B. Saff,
"Sphere Points,"
http://www.math.vanderbilt.edu/~esaff/sphere_points.html
[Saf03]: Ed Saff,
"Equal-area partitions of sphere",
Presentation at UNSW, 2003-07-28.
[Slo03]: Ian Sloan, "Equal area partition of S^3", Notes, 2003-07-29.
[WeiMW]: E. W. Weisstein,
"Hypersphere." From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/Hypersphere.html
[Zho95]: Y. M. Zhou,
"Arrangement of points on the sphere",
PhD thesis, University of South Florida, 1995.
[Zho98]: Y. M. Zhou,
"Equidistribution and extremal energy of N points on the sphere",
Modelling and computation for applications in mathematics,
science, and engineering (Evanston, IL, 1996), pp. 39--57,
Numer. Math. Sci. Comput., Oxford Univ. Press, New York, 1998.
Installation and Utilities
--------------------------
Toolbox Installer 2.2, 2003-07-22 by Rasmus Anthin.
Matlab Central File Exchange
https://au.mathworks.com/matlabcentral/fileexchange/3726-toolbox-installer-2-2
Files modified and relicenced with permission of Rasmus Anthin:
./private
install.m uninstall.m