-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrainer_in_single_file.py
231 lines (193 loc) · 8.44 KB
/
trainer_in_single_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import tensorflow as tf
import os
import cv2
import random
import time
import preprocessing as ppr
from utils import utils
from build_model import model_tools
import model_architecture as ma
from tensorflow.python.client import device_lib
from config import *
print(device_lib.list_local_devices())
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
#Parameters
raw_data='rawdata'
data_path='data'
height=100
width=100
if not os.path.exists(data_path):
ppr.image_processing(raw_data,data_path,height,width)
all_classes = os.listdir(data_path)
number_of_classes = len(all_classes)
color_channels=3
epochs=300
batch_size=10
batch_counter=0
model_save_name='checkpoints\\'
session=tf.Session()
#create Placeholders for images and labels
images_ph=tf.placeholder(tf.float32,shape=[None,height,width,color_channels])
labels_ph=tf.placeholder(tf.float32,shape=[None,number_of_classes])
#model's unit definitions
class model_tools:
# Defined functions for all the basic tensorflow components that we needed for building a model.
# function definitions are in the respective comments
def add_weights(self,shape):
# a common method to create all sorts of weight connections
# takes in shapes of previous and new layer as a list e.g. [2,10]
# starts with random values of that shape.
return tf.Variable(tf.truncated_normal(shape=shape, stddev=0.05))
def add_biases(self,shape):
# a common method to add create biases with default=0.05
# takes in shape of the current layer e.g. x=10
return tf.Variable(tf.constant(0.05, shape=shape))
def conv_layer(self,layer, kernel, input_shape, output_shape, stride_size):
#convolution occurs here.
#create weights and biases for the given layer shape
weights = self.add_weights([kernel, kernel, input_shape, output_shape])
biases = self.add_biases([output_shape])
#stride=[image_jump,row_jump,column_jump,color_jump]=[1,1,1,1] mostly
stride = [1, stride_size, stride_size, 1]
#does a convolution scan on the given image
layer = tf.nn.conv2d(layer, weights, strides=stride, padding='SAME') + biases
return layer
def pooling_layer(self,layer, kernel_size, stride_size):
# basically it reduces the complexity involved by only taking the important features alone
# many types of pooling is there.. average pooling, max pooling..
# max pooling takes the maximum of the given kernel
#kernel=[image_jump,rows,columns,depth]
kernel = [1, kernel_size, kernel_size, 1]
#stride=[image_jump,row_jump,column_jump,color_jump]=[1,2,2,1] mostly
stride = [1, stride_size, stride_size, 1]
return tf.nn.max_pool(layer, ksize=kernel, strides=stride, padding='SAME')
def flattening_layer(self,layer):
#make it single dimensional
input_size = layer.get_shape().as_list()
new_size = input_size[-1] * input_size[-2] * input_size[-3]
return tf.reshape(layer, [-1, new_size]),new_size
def fully_connected_layer(self,layer, input_shape, output_shape):
#create weights and biases for the given layer shape
weights = self.add_weights([input_shape, output_shape])
biases = self.add_biases([output_shape])
#most important operation
layer = tf.matmul(layer,weights) + biases # mX+b
return layer
def activation_layer(self,layer):
# we use Rectified linear unit Relu. it's the standard activation layer used.
# there are also other layer like sigmoid,tanh..etc. but relu is more efficent.
# function: 0 if x<0 else x.
return tf.nn.relu(layer)
pass
#tools for image processing and data handing.
class utils:
image_count = []
count_buffer=[]
class_buffer=all_classes[:]
def __init__(self):
self.image_count = []
self.count_buffer = []
for i in os.walk(data_path):
if len(i[2]):
self.image_count.append(len(i[2]))
self.count_buffer=self.image_count[:]
# processing images into arrays and dispatch as batches whenever called.
def batch_dispatch(self,batch_size=batch_size):
global batch_counter
if sum(self.count_buffer):
class_name = random.choice(self.class_buffer)
choice_index = all_classes.index(class_name)
choice_count = self.count_buffer[choice_index]
if choice_count==0:
class_name=all_classes[self.count_buffer.index(max(self.count_buffer))]
choice_index = all_classes.index(class_name)
choice_count = self.count_buffer[choice_index]
slicer=batch_size if batch_size<choice_count else choice_count
img_ind=self.image_count[choice_index]-choice_count
indices=[img_ind,img_ind+slicer]
images = self.generate_images(class_name,indices)
labels = self.generate_labels(class_name,slicer)
self.count_buffer[choice_index]=self.count_buffer[choice_index]-slicer
else:
images,labels=(None,)*2
return images, labels
#gives one hot for the respective labels
def generate_labels(self,class_name,number_of_samples):
one_hot_labels=[0]*number_of_classes
one_hot_labels[all_classes.index(class_name)]=1
one_hot_labels=[one_hot_labels]*number_of_samples
#one_hot_labels=tf.one_hot(indices=[all_classes.index(class_name)]*number_of_samples,depth=number_of_classes)
return one_hot_labels
# image operations
def generate_images(self,class_name,indices):
batch_images=[]
choice_folder=os.path.join(data_path,class_name)
selected_images=os.listdir(choice_folder)[indices[0]:indices[1]]
for image in selected_images:
img=cv2.imread(os.path.join(choice_folder,image))
batch_images.append(img)
return batch_images
#generating our own model, explanations are given respectively
def generate_model():
#MODEL ARCHITECTURE:
#level 1 convolution
network=model.conv_layer(images_ph,5,3,16,1)
network=model.pooling_layer(network,5,2)
network=model.activation_layer(network)
print(network)
#level 2 convolution
network=model.conv_layer(network,4,16,32,1)
network=model.pooling_layer(network,4,2)
network=model.activation_layer(network)
print(network)
#level 3 convolution
network=model.conv_layer(network,3,32,64,1)
network=model.pooling_layer(network,3,2)
network=model.activation_layer(network)
print(network)
#flattening layer
network,features=model.flattening_layer(network)
print(network)
#fully connected layer
network=model.fully_connected_layer(network,features,1024)
network=model.activation_layer(network)
print(network)
#output layer
network=model.fully_connected_layer(network,1024,number_of_classes)
print(network)
return network
#training happens here
def trainer(network,number_of_images):
#find error like squared error but better
cross_entropy=tf.nn.softmax_cross_entropy_with_logits_v2(logits=network,labels=labels_ph)
#now minize the above error
#calculate the total mean of all the errors from all the nodes
cost=tf.reduce_mean(cross_entropy)
tf.summary.scalar("cost", cost)#for tensorboard visualisation
#Now backpropagate to minimise the cost in the network.
optimizer=tf.train.AdamOptimizer().minimize(cost)
#print(optimizer)
session.run(tf.global_variables_initializer())
writer = tf.summary.FileWriter(model_save_name, graph=tf.get_default_graph())
merged = tf.summary.merge_all()
saver = tf.train.Saver(max_to_keep=4)
counter=0
for epoch in range(epochs):
tools = utils()
for batch in range(int(number_of_images / batch_size)):
counter+=1
images, labels = tools.batch_dispatch()
if images == None:
break
loss,summary = session.run([cost,merged], feed_dict={images_ph: images, labels_ph: labels})
print('loss', loss)
session.run(optimizer, feed_dict={images_ph: images, labels_ph: labels})
print('Epoch number ', epoch, 'batch', batch, 'complete')
writer.add_summary(summary,counter)
saver.save(session, model_save_name)
if __name__=="__main__":
tools=utils()
model=model_tools()
network=ma.generate_model(images_ph,number_of_classes)
number_of_images = sum([len(files) for r, d, files in os.walk("data")])
trainer(network,number_of_images)