-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSeaWater.java
544 lines (500 loc) · 22.8 KB
/
SeaWater.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/*
* GeoTools - The Open Source Java GIS Toolkit
* http://geotools.org
*
* (C) 1999-2008, Open Source Geospatial Foundation (OSGeo)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* NOTE: permission has been given to the JScience project (http://www.jscience.org)
* to distribute this file under BSD-like license.
*/
package org.mbp;
/**
* Sea water properties as a function of salinity, temperature and pressure.
* Density is computed using the 1980 definition of Equation of State (EOS80).
* Units are:
*
* <ul>
* <li>Salinity: Pratical Salinity Scale 1978 (PSS-78).</li>
* <li>Temperature: Celsius degrees according International Temperature Scale 1968 (ITS-68).</li>
* <li>Pressure: decibars (1 dbar = 10 kPa).
* </ul>
*
*
*
* @source $URL$
* @version $Id$
* @author Bernard Pelchat
* @author Martin Desruisseaux (PMO, IRD)
*
* @since 2.1
*/
public final class SeaWater {
/*
* Note: Les algorithmes originaux de l'UNESCO recevait en entrés
* des pressions en décibars. Les algorithmes écrites par
* Bernard Pelchat recevaient en entrés des pressions en
* MegaPascal. La première ligne de code des algorithmes
* de Bernard Pelchat multipliait donc les pressions par
* 100, afin de les convertir en decibars.
*/
/**
* Conductivity (in mS/cm) of a standard sea water sample.
* S is for <cite>Siemens</cite> (or Mho, its the same...).
*/
public static final double STANDARD_CONDUCTIVITY=42.914;
/**
* Coéfficients de l'équation d'état EOS-80. La densité
* calculée par ces coéfficients est la densité Sigma-T.
*/
private static final double
EOS80_A[] = { -28.263737E+0 , 6.793952E-2 , -9.095290E-3 , 1.001685E-4 , -1.120083E-6 , 6.536332E-9 },
EOS80_B[] = { 8.24493E-1 , -4.0899E-3 , 7.6438E-5 , -8.2467E-7 , 5.3875E-9 },
EOS80_C[] = { -5.72466E-3 , 1.0227E-4 , -1.6546E-6 },
EOS80_D = 4.8314E-4,
EOS80_E[] = { -1930.06E+0 , 148.4206E+0 , -2.327105E+0 , 1.360477E-2 , -5.155288E-5 },
EOS80_F[] = { 54.6746E+0 , -6.03459E-1 , 1.09987E-2 , -6.1670E-5 },
EOS80_G[] = { 7.944E-2 , 1.6483E-2 , -5.3009E-4 },
EOS80_H[] = { -1.194975E-1 , 1.43713E-3 , 1.16092E-4 , -5.77905E-7 },
EOS80_I[] = { 2.2838E-3 , -1.0981E-5 , -1.6078E-6 },
EOS80_J = 1.91075E-4,
EOS80_K[] = { 3.47718E-5 , -6.12293E-6 , 5.2787E-8 },
EOS80_M[] = { -9.9348E-7 , 2.0816E-8 , 9.1697E-10 },
EOS80_N[] = { 21582.27 , 3.359406 , 5.03217E-5 },
RHO_35_0_0 = 1028.1063,
DR_35_0_0 = 28.106331;
/**
* Coéfficients de l'équation d'état EOS-80. La densité
* calculée par ces coéfficients est la densité "vrai".
*/
private static final double
EOS80_At[] = {999.842594 , 6.793952E-2 , -9.095290E-3 , 1.001685E-4 , -1.120083E-6 , 6.536332E-9 },
EOS80_Et[] = {19652.21 , 148.4206 , -2.327105 , 1.360477E-2 , -5.155288E-5 },
EOS80_Ht[] = { 3.239908 , 1.43713E-3 , 1.16092E-4 , -5.77905E-7 },
EOS80_Kt[] = { 8.50935E-5 , -6.12293E-6 , 5.2787E-8 };
/**
* Coéfficients de l'équation de la salinité PSS-78.
*/
private static final double
PSS78_A[] = { 0.0080 , -0.1692 , 25.3851 , 14.0941 , -7.0261 , 2.7081 },
PSS78_B[] = { 0.0005 , -0.0056 , -0.0066 , -0.0375 , 0.0636 , -0.0144 },
PSS78_C[] = { 0.6766097 , 2.00564E-2 , 1.104259E-4 , -6.9698E-7 , 1.0031E-9 },
PSS78_D[] = { 3.426E-2 , 4.464E-4 , 4.215E-1 , -3.107E-3 },
PSS78_E[] = { 2.070E-5 , -6.370E-10 , 3.989E-15 },
PSS78_G[] = {-0.1692 , 50.7702 , 42.2823 ,-28.1044 , 13.5405 },
PSS78_H[] = {-0.0056 -0.0132 , -0.1125 , 0.2544 , -0.0720 },
PSS78_K = 0.0162;
/**
* Coéfficients pour les salinités élevées,
*/
private static final double
PSS78_AR[] = {7.737, -9.819, 8.663, -2.625},
PSS78_AT[] = {3.473E-2, 3.188E-3, -4.655E-5 },
PSS78_CR[] = {-10.01E-2, 4.82E-2, -6.682E-4 };
/**
* Constantes nécessaires au calcul de la chaleur spécifique.
*
* @see #specificHeat
*/
private static final double
HEAT_AA[] = { -7.643575 , 0.1072763 , -1.38385E-3 },
HEAT_BB[] = { 0.1770383 , -4.07718E-3 , 5.148E-5 },
HEAT_CC[] = { 4217.4 , -3.720283 , 0.1412855 , -2.654387E-3 , 2.093236E-5 },
HEAT_A[] = { -4.9592E-1 , 1.45747E-2 , -3.13885E-4 , 2.0357E-6 , 1.7168E-8 },
HEAT_B[] = { 2.4931E-4 , -1.08645E-5 , 2.87533E-7 , -4.0027E-9 , 2.2956E-11 },
HEAT_C[] = { -5.422E-8 , 2.6380E-9 , -6.5637E-11 , 6.136E-13 },
HEAT_D[] = { 4.9247E-3 , -1.28315E-4 , 9.802E-7 , 2.5941E-8 , -2.9179E-10 },
HEAT_E[] = { -1.2331E-4 , -1.517E-6 , 3.122E-8 },
HEAT_F[] = { -2.9558E-6 , 1.17054E-7 , -2.3905E-9 , 1.8448E-11 },
HEAT_G = 9.971E-8,
HEAT_H[] = { 5.540E-10 , -1.7682E-11 , 3.513E-13 },
HEAT_J = -1.4300E-12;
/**
* Constantes nécessaires au calcul de la température adiabétique.
*
* @see #adiabeticTemperatureGradient
*/
private static final double
GRAD_A[] = { 3.5803E-05 , 8.5258E-06 , -6.8360E-08 , 6.6228E-10 },
GRAD_B[] = { 1.8932E-06 , -4.2393E-08 },
GRAD_C[] = { 1.8741E-08 , -6.7795E-10 , 8.7330E-12 , -5.4481E-14 },
GRAD_D[] = {-1.1351E-10 , 2.7759E-12 },
GRAD_E[] = {-4.6206E-13 , 1.8676E-14 , -2.1687E-16 };
/**
* Constantes nécessaires au calcul de la profondeur.
*
* @see #depth
*/
private static final double
DEPTH_C[] = {9.72659 , -2.2512E-5 , 2.279E-10 , -1.82E-15};
/**
* Constantes nécessaires au calcul de la vitesse du son.
*
* @see #soundVelocity
*/
private static final double
SOUND_A0[] = { 1.389 , -1.262E-2 , 7.164E-5 , 2.006E-6 , -3.21E-8 },
SOUND_A1[] = { 9.4742E-5 , -1.2580E-5 , -6.4885E-8 , 1.0507E-8 , -2.0122E-10 },
SOUND_A2[] = {-3.9064E-7 , 9.1041E-9 , -1.6002E-10 , 7.988E-12 },
SOUND_A3[] = { 1.100E-10 , 6.649E-12 , -3.389E-13 },
SOUND_B0[] = {-1.922E-2 , -4.42E-5 },
SOUND_B1[] = { 7.3637E-5 , 1.7945E-7 },
SOUND_C0[] = {1402.388 , 5.03711 , -5.80852E-2 , 3.3420E-4 , -1.47800E-6 , 3.1464E-9 },
SOUND_C1[] = {0.153563 , 6.8982E-4 , -8.1788E-6 , 1.3621E-7 , -6.1185E-10 },
SOUND_C2[] = {3.1260E-5 , -1.7107E-6 , 2.5974E-8 , -2.5335E-10, 1.0405E-12 },
SOUND_C3[] = {-9.7729E-9 , 3.8504E-10, -2.3643E-12 },
SOUND_D0 = 1.727E-3,
SOUND_D1 = -7.9836E-6;
/**
* Constantes nécessaires au calcul de la saturation en oxygène dissous.
*
* @see #saturationO2
*/
private static final double
O2_AT[] = {-135.29996, 1.572288E+5, -6.637149E+7, 1.243678E+10, -8.621061E+11},
O2_AS[] = {0.020573, -12.142, 2363,1};
/**
* Do not allow instantiation of this class.
*/
private SeaWater(){
}
/**
* Computes density as a function of salinity, temperature and pressure.
*
* @param S Salinity PSS-78 (0 to 42)
* @param T Temperature ITS-68 (-2 to 40°C)
* @param P Pressure in decibars (0 to 10<sup>5</sup> dbar), not including atmospheric pressure.
* @return Density (kg/m³).
*/
public static double density(final double S, final double T, double P) {
P /= 10.0;
// Pure water density at atmospheric pressure
final double RHO_0_T_0 = polynome(T,EOS80_At);
// Sea water density at atmospheric pressure
final double SR = Math.sqrt(S);
final double RHO_S_T_0 = (EOS80_D*S + polynome(T,EOS80_C)*SR + polynome(T,EOS80_B))*S + RHO_0_T_0;
// Compression terms
final double K_S_T_0 = (polynome(T,EOS80_F) + polynome(T,EOS80_G)*SR)*S + polynome(T,EOS80_Et);
final double K_S_T_P = K_S_T_0 + ((EOS80_J*SR + polynome(T,EOS80_I)) * S + polynome(T,EOS80_Ht) +
(polynome(T,EOS80_Kt) + polynome(T,EOS80_M) * S) * P) * P;
return RHO_S_T_0/( 1.0 - P/K_S_T_P );
}
/**
* Computes density sigma-T as a function of salinity, temperature and pressure.
* Density Sigma-T is equivalent to the true density minus 1000 kg/m³, and
* has typical values around 35. This computation avoid some rouding errors
* occuring in the true density computation.
*
* @param S Salinity PSS-78 (0 to 42)
* @param T Temperature ITS-68 (-2 to 40°C)
* @param P Pressure in decibars (0 to 10<sup>5</sup> dbar), not including atmospheric pressure.
* @return Density Sigma-T (kg/m³).
*/
public static double densitySigmaT(final double S, final double T, double P) {
P /= 10.0;
// Sea water density at atmospheric pressure
final double SR = Math.sqrt(S);
final double RHO = (EOS80_D*S + polynome(T,EOS80_C)*SR + polynome(T,EOS80_B))*S + polynome(T,EOS80_A);
// Specific volume at atmospheric pressure
final double V_35_0_0 = 1.0/RHO_35_0_0;
final double SVAN_S_T_0 = -RHO*V_35_0_0/(RHO+RHO_35_0_0);
if (P <= 0) {
return RHO + DR_35_0_0;
}
// Compression terms, DK = K(S,T,P) - K(35,0,P)
final double K0 = (polynome(T,EOS80_F) + polynome(T,EOS80_G)*SR)*S + polynome(T,EOS80_E);
final double DK = K0 + (((EOS80_J * SR + polynome(T,EOS80_I)) * S + polynome(T,EOS80_H)) +
(polynome(T,EOS80_K) + polynome(T,EOS80_M) * S) * P) * P;
final double K_35_0_P = polynome(P,EOS80_N);
final double V_S_T_0 = SVAN_S_T_0 + V_35_0_0;
final double SVANS = SVAN_S_T_0 * (1.0 - P/K_35_0_P) + V_S_T_0 * P * DK /
(K_35_0_P * (K_35_0_P + DK));
// Compute density anomaly
final double V_35_0_P = V_35_0_0*( 1.0 - P/K_35_0_P );
final double DR_35_0_P = P/(K_35_0_P*V_35_0_P);
final double DVAN = SVANS/( V_35_0_P*( V_35_0_P + SVANS ) );
return DR_35_0_0 + DR_35_0_P - DVAN;
}
/**
* Computes volume as a function of salinity, temperature and pressure.
* This quantity if the inverse of density. This method is equivalent
* to <code>1/{@link #density density}(S,T,P)</code>.
*
* @param S Salinity PSS-78 (0 to 42)
* @param T Temperature ITS-68 (-2 to 40°C)
* @param P Pressure in decibars (0 to 10<sup>5</sup> dbar), not including atmospheric pressure.
* @return Volume (m³/kg).
*/
public static double volume(final double S, final double T, double P) {
P /= 10.0;
// Sea water density at atmospheric pressure
final double SR = Math.sqrt(S);
final double RHO = (EOS80_D*S + polynome(T,EOS80_C)*SR + polynome(T,EOS80_B))*S + polynome(T,EOS80_A);
// Specific volume at atmospheric pressure
final double V_35_0_0 = 1.0/RHO_35_0_0;
final double SVAN_S_T_0 = -RHO*V_35_0_0/(RHO+RHO_35_0_0);
if (P <= 0) {
return SVAN_S_T_0 + V_35_0_0;
}
// Compression terms, DK = K(S,T,P) - K(35,0,P)
final double K0 = (polynome(T,EOS80_F) + polynome(T,EOS80_G) * SR) * S + polynome(T,EOS80_E);
final double DK = K0 + (((EOS80_J * SR + polynome(T,EOS80_I)) * S + polynome(T,EOS80_H)) +
(polynome(T,EOS80_K) + polynome(T,EOS80_M) * S) * P) * P;
final double K_35_0_P = polynome(P,EOS80_N);
final double V_S_T_0 = SVAN_S_T_0 + V_35_0_0;
return (SVAN_S_T_0 + V_35_0_0) * (1.0 - P/K_35_0_P) + V_S_T_0 * P * DK / (K_35_0_P * (K_35_0_P + DK));
}
/**
* Computes volumic anomaly as a function of salinity, temperature and pressure.
* Volumic anomaly is defined as the sea water sample's volume minus a standard
* sample's volume, where the standard sample is a sample of salinity 35, temperature
* 0°C and the same pressure. In pseudo-code, {@code volumeAnomaly} is equivalent
* to <code>{@link #volume volume}(S,T,P)-{@link #volume volume}(35,0,P)</code>.
*
* @param S Salinity PSS-78 (0 to 42)
* @param T Temperature ITS-68 (-2 to 40°C)
* @param P Pressure in decibars (0 to 10<sup>5</sup> dbar), not including atmospheric pressure.
* @return Volumic anomaly (m³/kg).
*/
public static double volumeAnomaly(final double S, final double T, double P) {
P /= 10.0;
// Sea water density at atmospheric pressure
final double SR = Math.sqrt(S);
final double RHO = (EOS80_D*S + polynome(T,EOS80_C)*SR + polynome(T,EOS80_B))*S + polynome(T,EOS80_A);
// Specific volume at atmospheric pressure
final double V_35_0_0 = 1.0/RHO_35_0_0;
final double SVAN_S_T_0 = -RHO*V_35_0_0/(RHO+RHO_35_0_0);
if (P <= 0) {
return SVAN_S_T_0;
}
// Compression terms, DK = K(S,T,P) - K(35,0,P)
final double K0 = (polynome(T,EOS80_F) + polynome(T,EOS80_G)*SR)*S + polynome(T,EOS80_E);
final double DK = K0 + (((EOS80_J * SR + polynome(T,EOS80_I)) * S + polynome(T,EOS80_H)) +
(polynome(T,EOS80_K) + polynome(T,EOS80_M) * S) * P) * P;
final double K_35_0_P = polynome(P,EOS80_N);
final double V_S_T_0 = SVAN_S_T_0 + V_35_0_0;
return (SVAN_S_T_0*(1.0 - P/K_35_0_P) + V_S_T_0 * P * DK / (K_35_0_P * (K_35_0_P + DK)));
}
/**
* Practical salinity scale 1978 definition
* with temperature correction, XR = SQRT( Rt )
*/
private static double sal(double RT, double XT) {
return polynome(RT,PSS78_A) + (XT/(1.0+PSS78_K*XT)) * polynome(RT,PSS78_B);
}
/**
* {@code dsal(RT,XT)} function for derivative
* of {@code sal(RT,XT)} with <var>RT</var>.
*/
private static double dsal(double RT, double XT) {
return polynome(RT,PSS78_G) + (XT/(1.0+PSS78_K*XT)) * polynome(RT,PSS78_H);
}
/**
* Computes salinity as a function of conductivity, temperature and pressure.
*
* @param C Conductivity in mS/cm (millisiemens by centimeters). Multiply
* par {@link #STANDARD_CONDUCTIVITY} if {@code C} is not a
* real conductivity, but instead the ratio between the sample's
* conductivity and the standard sample's conductivity.
* @param T Temperature ITS-68 (-2 to 40°C)
* @param P Pressure in decibars (0 to 10<sup>5</sup> dbar), not including atmospheric pressure.
* @return Salinity PSS-78.
*
* @todo What to do with pression!?! Check the equation of state.
*/
public static double salinity(double C, final double T, final double P) {
C /= STANDARD_CONDUCTIVITY;
if (!(C < 5E-4)) { // use '!' in order to accept NaN
final double XR = Math.sqrt(C/(polynome(T,PSS78_C) * (1.0 + polynome(P,PSS78_E) * P /
((PSS78_D[1] * T+PSS78_D[0]) * T + 1.0 + (PSS78_D[3] * T + PSS78_D[2]) * C))));
final double S = sal(XR, T-15.0); // Do not use an 'assert' statement invoking 'cond'.
if (!(S>=42)) return S; // use '!' to accept NaN
/*
* Calcule la salinité pour une eau de conductivité,
* de température et de pression données. Cet algorithme
* doit être utilisé lorsque l'on s'attend à une salinité
* entre 42 et 50.
*/
return 35 * C + C * (C-1) * (polynome(C,PSS78_AR) + T * (polynome(T,PSS78_AT) + C *
(PSS78_CR[0] + PSS78_CR[1] * C + PSS78_CR[2] * T)));
// TODO: VERIFIER CE QUE DEVIENT LA PRESSION ET IMPLEMENTER L'EQUATION D'ETAT.
} else {
return 0; // Zero conductivity trap
}
}
/**
* Computes conductivity as a function of salinity, temperature and pressure.
*
* @param S Salinity PSS-78 (0 to 42)
* @param T Temperature ITS-68 (-2 to 40°C)
* @param P Pressure (0 to 10<sup>5</sup> dbar), not including atmospheric pressure.
* @return Conductivity in mS/cm.
*/
public static double conductivity(final double S, final double T, final double P) {
if (!(S < 0.02)) { // use '!' in order to accept NaN
double XT = T-15.0;
double RT = Math.sqrt(S/35.0); // First approximation
double SI = sal(RT,XT);
for (int n=0; n<10; n++) { // Iteration loop begin here with a maximum of 10 cycles
RT += (S-SI)/dsal(RT,XT);
SI = sal(RT,XT);
if (Math.abs(SI-S) < 1E-4) break;
}
double RTT = polynome(T,PSS78_C)*(RT*RT);
double AT = PSS78_D[3]*T + PSS78_D[2];
double BT = (PSS78_D[1]*T + PSS78_D[0])*T + 1.0;
double CP = RTT*(BT + polynome(P,PSS78_E)*P);
BT -= RTT*AT;
// Solve quadratic equation for C = RT35*RT*(1+C/AR+b)
double cnd = 0.5*(Math.sqrt(Math.abs((BT*BT) + 4.0*AT*CP)) - BT)/AT;
return cnd*STANDARD_CONDUCTIVITY;
} else {
return 0; // Zero salinity trap
}
}
/**
* Computes specific heat as a function of salinity, temperature and pressure.
*
* @param S Salinity PSS-78.
* @param T Temperature (°C).
* @param P Pressure (dbar), not including atmospheric pressure.
* @return Specific heat (J/(kg×°C)).
*/
public static double specificHeat(final double S, final double T, double P) {
P /= 10.0;
final double SR = Math.sqrt(S);
return (polynome(T,HEAT_CC) + (polynome(T,HEAT_BB)*SR + polynome(T,HEAT_AA))*S +
(((polynome(T,HEAT_C)*P + polynome(T,HEAT_B) )*P + polynome(T,HEAT_A) )*P) +
((((HEAT_J*SR+polynome(T,HEAT_H))*S*P + (HEAT_G*SR+polynome(T,HEAT_F))*S)*P +
(polynome(T,HEAT_E)*SR+polynome(T,HEAT_D))*S )*P));
}
/**
* Computes fusion temperature (melting point) as a function of salinity and pressure.
*
* @param S Salinity PSS-78.
* @param P Pressure (dbar), not including atmospheric pressure.
* @return Melting point (°C).
*/
public static double fusionTemperature(final double S, final double P) {
return (-0.0575 + 1.710523E-3*Math.sqrt(S) + -2.154996E-4*S)*S + -7.53E-4*P;
}
/**
* Computes adiabetic temperature gradient as a function of salinity, temperature and pressure.
*
* @param S Salinity PSS-78.
* @param T Temperature (°C).
* @param P Pressure (dbar), not including atmospheric pressure.
* @return Adiabetic temperature gradient (°C/dbar).
*/
public static double adiabeticTemperatureGradient(double S, final double T, final double P) {
S -= 35.0;
return (polynome(T,GRAD_A) + polynome(T,GRAD_B)*S +
(polynome(T,GRAD_C) + polynome(T,GRAD_D)*S + polynome(T,GRAD_E)*P)*P);
}
/**
* Computes depth as a function of pressure and latitude.
*
* @param P Pressure (dbar), not including atmospheric pressure.
* @param lat Latitude in degrees (-90 to 90°)
* @return Depth (m).
*/
public static double depth(final double P, double lat) {
lat = Math.sin(lat);
lat *= lat;
lat = 9.780318*( 1.0 + 5.2788E-3*lat + 2.36E-5*(lat*lat));
return polynome(P,DEPTH_C)*P / (lat+(0.5*2.184E-6)*P);
}
/**
* Computes sound velocity as a function of salinity, temperature and pressure.
*
* @param S Salinity PSS-78.
* @param T Temperature (°C).
* @param P Pressure (dbar), not including atmospheric pressure.
* @return Sound velocity (m/s).
*/
public static double soundVelocity(final double S, final double T, final double P) {
// S^0 terms
final double CW = ((polynome(T,SOUND_C3) *P + polynome(T,SOUND_C2))*P +
polynome(T,SOUND_C1))*P + polynome(T,SOUND_C0);
// S^1 terms
final double A = ((polynome(T,SOUND_A3) *P + polynome(T,SOUND_A2))*P +
polynome(T,SOUND_A1))*P + polynome(T,SOUND_A0);
// S^3/2 terms
final double B = polynome(T,SOUND_B0) + polynome(T,SOUND_B1)*P;
// S^2 terms
final double D = SOUND_D0 + SOUND_D1*P;
// sound speed return
return CW + (D*S + B*Math.sqrt(S) + A)*S;
}
/**
* Computes saturation in disolved oxygen as a function of salinity and temperature.
*
* @param S Salinity PSS-78.
* @param T Temperature (°C).
* @return Saturation in disolved oxygen (µmol/kg).
*/
public static double saturationO2(final double S, double T) {
T += 273.15;
return Math.exp(polynome_neg(T,O2_AT) + S*polynome_neg(T,O2_AS));
}
/**
* Calcule la valeur d'un polynôme.
* Cette fonction calcule la valeur de:
*
* <blockquote><pre>
* y = C[0] + C[1]*x + C[2]*x² + C[3]*x³
* </pre></blockquote>
*
* où C est un vecteur de coéfficients transmis en argument.
* Une exception sera levée si ce tableau ne contient pas
* au moins 1 élément.
*
* @param x Valeur x à laquelle calculer le polynôme.
* @param c Coéfficients C du polynôme.
* @return La valeur du polynôme au x spécifié.
*
* @see #poly_inv(double,double[])
*/
private static double polynome(final double x, final double c[]) {
int n = c.length-1;
double y = c[n];
while (n > 0) {
y = y*x + c[--n];
}
return y;
}
/**
* Calcule la valeur de:
*
* <blockquote><pre>
* y = C[0] + C[1]/x + C[2]/x² + C[3]/x³
* </pre></blockquote>
*
* où C est un vecteur de coéfficients transmis en argument.
* Une exception sera levée si ce tableau ne contient pas
* au moins 1 élément.
*
* @param x Valeur x à laquelle calculer le polynôme.
* @param C Coéfficients C du polynôme.
* @return La valeur du polynôme au x spécifié.
*
* @see #polynome(double,double[])
*/
private static double polynome_neg(final double x, final double c[]) {
int n = c.length-1;
double y = c[n];
while (n > 0) {
y = y/x + c[--n];
}
return y;
}
}