-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfractional_integral_flow.py
191 lines (153 loc) · 6.95 KB
/
fractional_integral_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from gurobipy import GRB, Model, quicksum
from configure_gurobi import configure_gurobi
from simulations import EPS, SplittableMechanism, ConfluentMechanism
class SplittableFlow(SplittableMechanism):
PLOT_COLOR = "#9C27B0"
PLOT_ABBREVIATION = "s"
PLOT_LABEL = "optimal splittable flow"
PLOT_PATTERN = "solid"
@staticmethod
def solve_flow(potential_delegations):
"""Minimize congestion for splittable flow by solving a linear program.
Assumes that a sink is reachable from every node.
Args:
potential_delegations (list of (list of int / None)): adjacency list representation of the graph
Returns:
(list of ((dict of int → float) / None), float): (splittable flow, maximum congestion)
>>> SplittableFlow.solve_flow([None, [0], [1, 1], None])
([None, {0: 2.0}, {1: 1.0}, None], 3.0)
>>> SplittableFlow.solve_flow([None, None, [0, 1], [1]])
([None, None, {0: 1.0}, {1: 1.0}], 2.0)
>>> SplittableFlow.solve_flow([None, None, [0, 1]]) == ([None, None, {0: 0.5, 1: 0.5}], 1.5)
True
Linear program variables:
z = minimization objective, equal to maximum weight of any sink
f(u, v) = flow through edge (u, v)
minimize z
subject to
Σ f(_, v) + 1 <= z ∀ sinks v
1 + Σ f(_, u) = Σ f(u, _) ∀ non-sinks u
f(u, v) >= 0 ∀ adjacent u, v
(The sums range over the implicit argument denoted by an underscore.)
"""
unique_edges = []
for delegations in potential_delegations:
if delegations is None:
unique_edges.append(None)
else:
unique_edges.append(list(set(delegations)))
configure_gurobi()
model = Model("splittable_flow")
z = model.addVar(vtype=GRB.CONTINUOUS, name="z")
predecessors = {i: set() for i in range(len(unique_edges))}
flow = {}
for u, edges in enumerate(unique_edges):
if edges is not None:
for v in edges:
flow[(u, v)] = model.addVar(vtype=GRB.CONTINUOUS, name=f"flow_{u}_{v}")
model.addConstr(flow[(u, v)] >= 0)
predecessors[v].add(u)
for u, edges in enumerate(unique_edges):
if edges is not None:
model.addConstr(
quicksum(flow[(u, v)] for v in edges) == quicksum(flow[(v, u)] for v in predecessors[u]) + 1)
else:
model.addConstr(z >= quicksum(flow[(v, u)] for v in predecessors[u]) + 1)
model.setObjective(z, GRB.MINIMIZE)
model.optimize()
flow_list = []
for u, edges in enumerate(unique_edges):
if edges is None:
flow_list.append(None)
else:
out_flow = {}
assert sum(flow[(u, v)].X for v in edges) >= 1 - EPS
for v in edges:
if flow[(u, v)].X > EPS:
out_flow[v] = flow[(u, v)].X
flow_list.append(out_flow)
return flow_list, z.X
def get_delegations(self, time_out=None):
return self.solve_flow(self.graph.potential_delegations)[0]
class ConfluentFlow(ConfluentMechanism):
PLOT_COLOR = "#3F51B5"
PLOT_ABBREVIATION = "c"
PLOT_LABEL = "optimal confluent flow"
PLOT_PATTERN = "solid"
@staticmethod
def is_splittable():
return False
@staticmethod
def solve_flow(potential_delegations, time_out=None):
"""Minimize congestion for confluent flow by solving a Mixed Integer Linear Program.
Assumes that a sink is reachable from every node.
Args:
potential_delegations (list of (list of int / None)): adjacency list representation of the graph
time_out (float / None): Timeout in seconds, None for unbounded running time
Returns:
(list of (int / None), float): (optimal flow, maximum congestion)
>>> ConfluentFlow.solve_flow([None, [0], [1, 1], None])
([None, 0, 1, None], 3)
>>> ConfluentFlow.solve_flow([None, None, [0, 1], [1]])
([None, None, 0, 1], 2)
>>> ConfluentFlow.solve_flow([None, None, [0, 1]])[1]
2
MILP variables:
z = minimization objective, equal to maximum weight of any sink
f(u, v) = flow through edge (u, v)
x(u, v) = binary indicator variable for edges; if zero, flow must be zero
M is a large enough constant, here set as the number of nodes
minimize z
subject to
Σ f(_, v) + 1 <= z ∀ sinks v
1 + Σ f(_, u) = Σ f(u, _) ∀ non-sinks u
f(u, v) >= 0 ∀ adjacent u, v
f(u, v) <= M * x(u, v) ∀ adjacent u, v
Σ x(u, _) = 1 ∀ non-sinks u
(The sums range over the implicit argument denoted by an underscore.)
"""
unique_edges = []
for delegations in potential_delegations:
if delegations is None:
unique_edges.append(None)
else:
unique_edges.append(list(set(delegations)))
configure_gurobi()
model = Model("confluent_flow")
z = model.addVar(vtype=GRB.INTEGER, name="z")
M = len(unique_edges)
predecessors = {i: set() for i in range(len(unique_edges))}
flow = {}
x = {}
for u, edges in enumerate(unique_edges):
if edges is not None:
for v in edges:
flow[(u, v)] = model.addVar(vtype=GRB.INTEGER, name=f"flow_{u}_{v}")
model.addConstr(flow[(u, v)] >= 0)
x[(u, v)] = model.addVar(vtype=GRB.BINARY, name=f"x_{u}_{v}")
predecessors[v].add(u)
model.addConstr(flow[(u, v)] <= M * x[(u, v)])
model.addConstr(quicksum(x[(u, v)] for v in edges) == 1)
for u, edges in enumerate(unique_edges):
if edges is not None:
model.addConstr(
quicksum(flow[(u, v)] for v in edges) == quicksum(flow[(v, u)] for v in predecessors[u]) + 1)
else:
model.addConstr(z >= quicksum(flow[(v, u)] for v in predecessors[u]) + 1)
model.setObjective(z, GRB.MINIMIZE)
if time_out is not None:
model.setParam('TimeLimit', time_out)
model.optimize()
delegations = [None for _ in unique_edges]
for u, edges in enumerate(unique_edges):
if edges is not None:
for v in edges:
if flow[(u, v)].X > EPS:
assert delegations[u] is None
delegations[u] = v
return delegations, round(z.X)
def get_delegations(self, time_out=None):
return self.solve_flow(self.graph.potential_delegations, time_out)[0]
if __name__ == "__main__":
from doctest import testmod
testmod()