-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_runtimes.py
141 lines (116 loc) · 5.83 KB
/
plot_runtimes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from math import ceil
from time import process_time
from matplotlib import pyplot as plt, rc
from numpy.random import seed
from mechanism_names import parse_mechanisms, describe_mechanisms
from plot_smoothened_traces import Setting
from simulations import Graph
MECHANISM_TIMEOUT = 8 * 60
def compare_runtimes(settings, time, random_seed, log_path=None, plot_path=None):
"""
Args:
settings (list of Setting): Description s of a setting
time (int): total time steps to run
random_seed (int): seed for randomness
log_path (string / None): Desired path for log. Defaults to data/logs/TITLE.csv, where TITLE includes parameters
plot_path (string / None): Desired path for graphics file. PDF extension is supported, other file formats may
also work depending on matplotlib. Defaults to data/plots/TITLE.pdf
"""
title = f"tsmo_T{time}_sd{random_seed}"
for s in settings:
title += (f"_({''.join(m.PLOT_ABBREVIATION for m in s.mechanisms)}_g{round(s.gamma * 100)}_k{s.outdegree}_"
f"d{round(s.d * 100)}_sz{s.step_size}_s{s.smoothing})")
if log_path is None:
log_path = f"data/logs/{title}.csv"
if plot_path is None:
plot_path = f"data/plots/{title}.pdf"
plt.figure(figsize=(6.4, 4.8))
fonts = {'family': 'serif', 'serif': ['Libertine']}
rc('font', **fonts)
rc('text', usetex=True)
with open(log_path, 'w') as file:
file.write(f"Runtimes: settings={settings}, T={time}, random_seed={random_seed}\n")
for s in settings:
seed(random_seed)
runtime_history_sum = [[0 for _ in range(ceil(time / s.step_size))] for _ in s.mechanisms]
for iteration in range(s.smoothing):
print(f"Iteration {iteration + 1} out of {s.smoothing}")
elapsed_time = [0. for _ in s.mechanisms]
graph = Graph(s.gamma, s.d, s.outdegree)
mechanisms = [observer_class(graph) for observer_class in s.mechanisms]
tick = -1
for t in range(1, time + 1):
if t != 1:
graph.add_node()
if (t - 1) % s.step_size == 0:
tick += 1
for i, mechanism in enumerate(mechanisms):
if tick >= len(runtime_history_sum[i]):
continue
time_out = False
begin = process_time()
try:
mechanism.get_delegations(time_out=MECHANISM_TIMEOUT - elapsed_time[i])
except TimeoutError:
time_out = True
duration = process_time() - begin
elapsed_time[i] += duration
if elapsed_time[i] >= MECHANISM_TIMEOUT:
time_out = True
if time_out:
runtime_history_sum[i] = runtime_history_sum[i][:tick]
print(f"Mechanism {mechanism.PLOT_LABEL} timed out in iteration {iteration + 1} and "
f"at time {elapsed_time[i]} s.")
continue
runtime_history_sum[i][tick] += duration
for i, mechanism in enumerate(s.mechanisms):
if len(runtime_history_sum[i]) == 0:
print(f"Nothing to plot for {mechanism.PLOT_LABEL}, all iterations timed out.")
continue
n = [x * s.step_size + 1 for x in range(len(runtime_history_sum[i]))]
average_runtime = [time / s.smoothing for time in runtime_history_sum[i]]
plt.plot(n, average_runtime, color=mechanism.PLOT_COLOR, label=mechanism.PLOT_LABEL,
linestyle=mechanism.PLOT_PATTERN)
plt.legend(loc=2)
plt.ylabel('average runtime (s)')
plt.xlabel('number of nodes')
plt.ylim(ymin=0)
plt.xlim(xmin=0)
plt.savefig(plot_path, bbox_inches='tight')
if __name__ == '__main__':
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('max_number', metavar='M', type=int,
help='maximum number of nodes generated (int)')
parser.add_argument('-g', type=float, default=1,
help='gamma (float)')
parser.add_argument('-k', type=int, default=2,
help='k > 0 (int)')
parser.add_argument('-d', type=float, default=0.5,
help='d ∈ (0,1) (float)')
parser.add_argument('-sz', type=int, default=1,
help='value of step size > 0 (int)')
parser.add_argument('-sm', type=int, default=10,
help='number of iterations for smoothing (int)')
parser.add_argument('-sd', type=int, default=0,
help='value of seed (int)')
parser.add_argument('-m', type=str, default='prcsAa',
help='mechanisms to use:\n' + describe_mechanisms(False))
parser.add_argument('-ol', type=str, default=None,
help='write path for log')
parser.add_argument('-o', type=str, default=None,
help='write path for plot')
args = parser.parse_args()
max_number = args.max_number
gamma = args.g
k = args.k
d = args.d
step_size = args.sz
smoothing = args.sm
random_seed = args.sd
log_path = args.ol
plot_path = args.o
mechanisms = parse_mechanisms(args.m, False)
print(args)
setting = Setting(mechanisms, gamma, k, d, step_size, smoothing)
compare_runtimes([setting], max_number, random_seed, log_path, plot_path)