-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_sts.py
199 lines (170 loc) · 7.81 KB
/
run_sts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# via examples from https://github.com/facebookresearch/SentEval
from collections import defaultdict
from functools import partial
from subspaces.subspaces import compute_subspace_sim, compute_vector_sim, subspace_embed_sentence, dyn_embedding_sizes, dyn_embedding_len_sizes, \
get_pca_components, vector_embed_sentence
import json
import logging
logging.basicConfig(format="%(asctime)s %(levelname)-8s %(name)-18s: %(message)s", level=logging.DEBUG)
log = logging.getLogger(__name__)
class dotdict(dict):
""" dot.notation access to dictionary attributes """
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
# Set PATHs
PATH_TO_SENTEVAL = '../'
import senteval
import numpy as np
"""
Note:
The user has to implement two functions:
1) "batcher" : transforms a batch of sentences into sentence embeddings.
i) takes as input a "batch", and "params".
ii) outputs a numpy array of sentence embeddings
iii) Your sentence encoder should be in "params"
2) "prepare" : sees the whole dataset, and can create a vocabulary
i) outputs of "prepare" are stored in "params" that batcher will use.
"""
# if we pass this prepare function, then arora-style deprojection is applied to word-vectors before computing subspaces
# (it's also applied to sent vectors in the vector-only case)
main_pc = None
def prepare_deproject(params, samples, alpha_embed=0.001):
method = params["_method"]
log.debug("computing first principal component over all sents")
global main_pc
sents = [sent for sent in samples if sent != []]
sents_emb = [vector_embed_sentence(sent, alpha_embed=alpha_embed, method=method, normalize=False) for sent in sents]
sents_emb = np.array([s for s in sents_emb if s is not None])
V, _ = get_pca_components(sents_emb, 1)
main_pc = V[0]
log.debug("Done computing first principal component.")
return
def prepare_none(params, samples, method=None):
return
def batcher(params, batch):
batch = [sent if sent != [] else ['.'] for sent in batch]
return np.array([" ".join(b).lower() for b in batch])
# TODO adapt these settings for what model(s) you want to evaluate exactly
# TODO clone senteval repo (https://github.com/facebookresearch/SentEval) and put it in the root folder of this repo
# Set params for SentEval
PATH_TO_DATA = './SentEval-master/data/senteval_data'
DO_DEPROJECTION = False
DO_WPCA = True # do frequency weighting on words while computing subspace
DO_MAGRATIO = True # use ellipsoids rather than just subspaces
reference = {}
if __name__ == "__main__":
transfer_tasks = ['STS12', 'STS13', 'STS14', 'STS15', 'STS16'] # 'STSBenchmark',
all_results = {}
if DO_DEPROJECTION:
log.debug("Using arora-style deprojection!")
prepare = prepare_deproject
else:
prepare = prepare_none
if DO_WPCA:
log.debug("Will do weighted PCA (and word-weighting in vectors)!")
alpha = 0.001
else:
alpha = None
if DO_MAGRATIO:
log.debug("Will use ellipsoid features!")
# beta = 0.5 # TODO use this
beta = 1.0
else:
beta = 0.
# for setting in ["vec", "sp"]:
for method in ["glove", "fasttext"]: # glove_cc
# for method in ["spacy"]: # ""fasttext"]:
# if setting == "vec":
sim = lambda a, b: compute_vector_sim(str(a), str(b), method=method, deproject_pc=main_pc, alpha_embed=alpha)
params_senteval = {
'task_path': PATH_TO_DATA, 'usepytorch': False, '_method': method,
'similarity': sim
}
params_senteval = dotdict(params_senteval)
# se = senteval.SentEval(params_senteval, batcher, prepare) # todo this is default
se = senteval.SentEval(params_senteval, batcher, prepare)
results = se.eval(transfer_tasks)
all_results[("vec", method, "none")] = results
# else:
for rank in [4, 5, 6, 0.6, 0.7, 0.8, 0.9]: # for rank in [0.8, 0.9, 0.95, 0.99]:
sim = lambda a, b: compute_subspace_sim(
a, b, rank_or_energy=rank, method=method, alpha=alpha,
beta=beta, deproject_pc=main_pc
)
params_senteval = {
'task_path': PATH_TO_DATA, 'usepytorch': False, '_method': method,
'similarity': sim
}
params_senteval = dotdict(params_senteval)
se = senteval.SentEval(params_senteval, batcher, prepare)
results = se.eval(transfer_tasks)
all_results[("sp", method, rank)] = results
final_table = {
"STS12": {
"MSRpar": [0. for _ in range(len(all_results))],
"MSRvid": [0. for _ in range(len(all_results))],
"SMTeuroparl": [0. for _ in range(len(all_results))],
"surprise.OnWN": [0. for _ in range(len(all_results))],
"surprise.SMTnews": [0. for _ in range(len(all_results))],
},
"STS13": {
"FNWN": [0. for _ in range(len(all_results))],
"OnWN": [0. for _ in range(len(all_results))],
"headlines": [0. for _ in range(len(all_results))],
},
"STS14": {
"OnWN": [0. for _ in range(len(all_results))],
"deft-forum": [0. for _ in range(len(all_results))],
"deft-news": [0. for _ in range(len(all_results))],
"headlines": [0. for _ in range(len(all_results))],
"images": [0. for _ in range(len(all_results))],
"tweet-news": [0. for _ in range(len(all_results))],
},
"STS15": {
"answers-forums": [0. for _ in range(len(all_results))],
"answers-students": [0. for _ in range(len(all_results))],
"belief": [0. for _ in range(len(all_results))],
"headlines": [0. for _ in range(len(all_results))],
"images": [0. for _ in range(len(all_results))],
},
"STS16": {
"answer-answer": [0. for _ in range(len(all_results))],
"headlines": [0. for _ in range(len(all_results))],
"plagiarism": [0. for _ in range(len(all_results))],
"postediting": [0. for _ in range(len(all_results))],
"question-question": [0. for _ in range(len(all_results))]
},
# "STSBenchmark": defaultdict(lambda: [0. for _ in range(len(all_results))]),
"ZALL": {
"STS12": [0. for _ in range(len(all_results))],
"STS13": [0. for _ in range(len(all_results))],
"STS14": [0. for _ in range(len(all_results))],
"STS15": [0. for _ in range(len(all_results))],
"STS16": [0. for _ in range(len(all_results))]
}
}
headers = []
for i, ((setting, method, rank), results) in enumerate(sorted(all_results.items(), key=lambda k: k[0])):
keep = []
conf = "%s-%s-%s" % (setting, method, rank)
headers.append(conf)
log.debug(conf)
for year in sorted(results.keys()):
for task in sorted(results[year].keys()):
if task == "all":
final_table["ZALL"][year][i] = results[year][task]["pearson"]["mean"]
keep.append((results[year][task]["pearson"]["mean"], year, task))
else:
final_table[year][task][i] = results[year][task]["pearson"][0]
log.debug("%.5s \t %s \t %s" % (results[year][task]["pearson"][0], year, task))
for tup in keep:
log.debug("%.5s \t ALL \t %s \t %s" % tup)
log.debug("--------------------------------")
print("\t".join(headers) + "\tTASK")
for year in sorted(final_table.keys()):
for task in sorted(final_table[year].keys()):
print("\t".join([str(v)[:5] for v in final_table[year][task]]) + ("\t%s-%s" % (year, task)))
input()
print(json.dumps(dyn_embedding_sizes, indent=2))
print(dyn_embedding_len_sizes)