forked from leofansq/Tools_Merge_Image_PointCloud
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunc.py
365 lines (305 loc) · 10.9 KB
/
func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
"""
@leofansq
Basic function:
show_img(name, img): Show the image
find_files(directory, pattern): Method to find target files in one directory, including subdirectory
Load function:
load_calib_cam2cam(filename, debug=False): Only load R_rect & P_rect for need
load_calib_lidar2cam(filename, debug=False): Load calib parameters for LiDAR2Cam
load_calib(filename, debug=False): Load the calib parameters which has R_rect & P_rect & Tr in the same file
load_img(filename, debug=False): Load the image
load_lidar(filename, debug=False): Load the PointCloud
Process function:
cal_proj_matrix_raw(filename_c2c, filename_l2c, camera_id, debug=False): Compute the projection matrix from LiDAR to Img
cal_proj_matrix(filename, camera_id, debug=False): Compute the projection matrix from LiDAR to Image
project_lidar2img(img, pc, p_matrix, debug=False): Project the LiDAR PointCloud to Image
generate_colorpc(img, pc, pcimg, debug=False): Generate the PointCloud with color
save_pcd(filename, pc_color): Save the PointCloud with color in the term of .pcd
"""
import cv2
import numpy as np
from pyntcloud import PyntCloud
import os
import fnmatch
from tqdm import tqdm
from pprint import pprint
#**********************************************************#
# Basic Function #
#**********************************************************#
def show_img(name, img):
"""
Show the image
Parameters:
name: name of window
img: image
"""
cv2.namedWindow(name, 0)
cv2.imshow(name, img)
def find_files(directory, pattern):
"""
Method to find target files in one directory, including subdirectory
:param directory: path
:param pattern: filter pattern
:return: target file path list
"""
file_list = []
for root, _, files in os.walk(directory):
for basename in files:
if fnmatch.fnmatch(basename, pattern):
filename = os.path.join(root, basename)
file_list.append(filename)
return file_list
#**********************************************************#
# Load Function #
#**********************************************************#
def load_calib_cam2cam(filename, debug=False):
"""
Only load R_rect & P_rect for neeed
Parameters: filename of the calib file
Return:
R_rect: a list of r_rect(shape:3*3)
P_rect: a list of p_rect(shape:3*4)
"""
with open(filename) as f_calib:
lines = f_calib.readlines()
R_rect = []
P_rect = []
for line in lines:
title = line.strip().split(' ')[0]
if title[:-4] == "R_rect":
r_r = np.array(line.strip().split(' ')[1:], dtype=np.float32)
r_r = np.reshape(r_r, (3,3))
R_rect.append(r_r)
elif title[:-4] == "P_rect":
p_r = np.array(line.strip().split(' ')[1:], dtype=np.float32)
p_r = np.reshape(p_r, (3,4))
P_rect.append(p_r)
if debug:
print ("R_rect:")
pprint (R_rect)
print ()
print ("P_rect:")
pprint (P_rect)
return R_rect, P_rect
def load_calib_lidar2cam(filename, debug=False):
"""
Load calib
Parameters: filename of the calib file
Return:
tr: shape(4*4)
[ r t
0 0 0 1]
"""
with open(filename) as f_calib:
lines = f_calib.readlines()
for line in lines:
title = line.strip().split(' ')[0]
if title[:-1] == "R":
r = np.array(line.strip().split(' ')[1:], dtype=np.float32)
r = np.reshape(r, (3,3))
if title[:-1] == "T":
t = np.array(line.strip().split(' ')[1:], dtype=np.float32)
t = np.reshape(t, (3,1))
tr = np.hstack([r,t])
tr = np.vstack([tr,np.array([0,0,0,1])])
if debug:
print ()
print ("Tr:")
print (tr)
return tr
def load_calib(filename, debug=False):
"""
Load the calib parameters which has R_rect & P_rect & Tr in the same file
Parameters:
filename: the filename of the calib file
Return:
R_rect, P_rect, Tr
"""
with open(filename) as f_calib:
lines = f_calib.readlines()
P_rect = []
for line in lines:
title = line.strip().split(' ')[0]
if len(title):
if title[0] == "R":
R_rect = np.array(line.strip().split(' ')[1:], dtype=np.float32)
R_rect = np.reshape(R_rect, (3,3))
elif title[0] == "P":
p_r = np.array(line.strip().split(' ')[1:], dtype=np.float32)
p_r = np.reshape(p_r, (3,4))
P_rect.append(p_r)
elif title[:-1] == "Tr_velo_to_cam":
Tr = np.array(line.strip().split(' ')[1:], dtype=np.float32)
Tr = np.reshape(Tr, (3,4))
Tr = np.vstack([Tr,np.array([0,0,0,1])])
return R_rect, P_rect, Tr
def load_img(filename, debug=False):
"""
Load the image
Parameter:
filename: the filename of the image
Return:
img: image
"""
img = cv2.imread(filename)
if debug: show_img("Image", img)
return img
def load_lidar(filename, debug=False):
"""
Load the PointCloud
Parameter:
filename: the filename of the PointCloud
Return:
points: PointCloud associated with the image
"""
# N*4 -> N*3
points = np.fromfile(filename, dtype=np.float32)
points = np.reshape(points, (-1,4))
points = points[:, :3]
points.tofile("./temp_pc.bin")
# Remove all points behind image plane (approximation)
cloud = PyntCloud.from_file("./temp_pc.bin")
cloud.points = cloud.points[cloud.points["x"]>=0]
points = np.array(cloud.points)
if debug:
print (points.shape)
return points
#**********************************************************#
# Process Function #
#**********************************************************#
def cal_proj_matrix_raw(filename_c2c, filename_l2c, camera_id, debug=False):
"""
Compute the projection matrix from LiDAR to Img
Parameters:
filename_c2c: filename of the calib file for cam2cam
filename_l2c: filename of the calib file for lidar2cam
camera_id: the NO. of camera
Return:
P_lidar2img: the projection matrix from LiDAR to Img
"""
# Load Calib Parameters
R_rect, P_rect = load_calib_cam2cam(filename_c2c, debug)
tr = load_calib_lidar2cam(filename_l2c, debug)
# Calculation
R_cam2rect = np.hstack([R_rect[0], np.array([[0],[0],[0]])])
R_cam2rect = np.vstack([R_cam2rect, np.array([0,0,0,1])])
P_lidar2img = np.matmul(P_rect[camera_id], R_cam2rect)
P_lidar2img = np.matmul(P_lidar2img, tr)
if debug:
print ()
print ("P_lidar2img:")
print (P_lidar2img)
return P_lidar2img
def cal_proj_matrix(filename, camera_id, debug=False):
"""
Compute the projection matrix from LiDAR to Img
Parameters:
filename: filename of the calib file
camera_id: the NO. of camera
Return:
P_lidar2img: the projection matrix from LiDAR to Img
"""
# Load Calib Parameters
R_rect, P_rect, tr = load_calib(filename, debug)
# Calculation
R_cam2rect = np.hstack([R_rect, np.array([[0],[0],[0]])])
R_cam2rect = np.vstack([R_cam2rect, np.array([0,0,0,1])])
P_lidar2img = np.matmul(P_rect[camera_id], R_cam2rect)
P_lidar2img = np.matmul(P_lidar2img, tr)
if debug:
print ()
print ("P_lidar2img:")
print (P_lidar2img)
return P_lidar2img
def project_lidar2img(img, pc, p_matrix, debug=False):
"""
Project the LiDAR PointCloud to Image
Parameters:
img: Image
pc: PointCloud
p_matrix: projection matrix
"""
# Dimension of data & projection matrix
dim_norm = p_matrix.shape[0]
dim_proj = p_matrix.shape[1]
# Do transformation in homogenuous coordinates
pc_temp = pc.copy()
if pc_temp.shape[1]<dim_proj:
pc_temp = np.hstack([pc_temp, np.ones((pc_temp.shape[0],1))])
points = np.matmul(p_matrix, pc_temp.T)
points = points.T
temp = np.reshape(points[:,dim_norm-1], (-1,1))
points = points[:,:dim_norm]/(np.matmul(temp, np.ones([1,dim_norm])))
# Plot
if debug:
depth_max = np.max(pc[:,0])
for idx,i in enumerate(points):
color = int((pc[idx,0]/depth_max)*255)
cv2.rectangle(img, (int(i[0]-1),int(i[1]-1)), (int(i[0]+1),int(i[1]+1)), (0, 0, color), -1)
show_img("Test", img)
return points
def generate_colorpc(img, pc, pcimg, debug=False):
"""
Generate the PointCloud with color
Parameters:
img: image
pc: PointCloud
pcimg: PointCloud project to image
Return:
pc_color: PointCloud with color e.g. X Y Z R G B
"""
x = np.reshape(pcimg[:,0], (-1,1))
y = np.reshape(pcimg[:,1], (-1,1))
xy = np.hstack([x,y])
pc_color = []
for idx, i in enumerate(xy):
if (i[0]>1 and i[0]<img.shape[1]) and (i[1]>1 and i[1]<img.shape[0]):
bgr = img[int(i[1]), int(i[0])]
p_color = [pc[idx][0], pc[idx][1], pc[idx][2], bgr[2], bgr[1], bgr[0]]
pc_color.append(p_color)
pc_color = np.array(pc_color)
return pc_color
def save_pcd(filename, pc_color):
"""
Save the PointCloud with color in the term of .pcd
Parameter:
filename: filename of the pcd file
pc_color: PointCloud with color
"""
f = open(filename, "w")
f.write("# .PCD v0.7 - Point Cloud Data file format\n")
f.write("VERSION 0.7\n")
f.write("FIELDS x y z rgb\n")
f.write("SIZE 4 4 4 4\n")
f.write("TYPE F F F F\n")
f.write("COUNT 1 1 1 1\n")
f.write("WIDTH {}\n".format(pc_color.shape[0]))
f.write("HEIGHT 1\n")
f.write("POINTS {}\n".format(pc_color.shape[0]))
f.write("DATA ascii\n")
for i in pc_color:
# rgb = (int(i[3])<<16) | (int(i[4])<<8) | (int(i[5]) | 1<<24)
# f.write("{:.6f} {:.6f} {:.6f} {}\n".format(i[0],i[1],i[2],rgb))
f.write("{:.6f} {:.6f} {:.6f} {} {} {}\n".format(i[0],i[1],i[2],i[3],i[4],i[5]))
f.close()
if __name__ == '__main__':
# Option
calib_cam2cam = "./calib/calib_cam_to_cam.txt"
calib_lidar2camera = "./calib/calib_velo_to_cam.txt"
camera_id = 1
filepath_img = "./img/000003.png"
# filepath_img = "./new.png"
filepath_lidar = "./lidar/000003.bin"
filename_save = "./test.pcd"
debug = True
# Process
p_matrix = cal_proj_matrix_raw(calib_cam2cam, calib_lidar2camera, camera_id, debug)
img = load_img(filepath_img, debug)
img = img[0:150,0:500]
pc = load_lidar(filepath_lidar, debug)
pcimg = project_lidar2img(img, pc, p_matrix, debug)
pc_color = generate_colorpc(img, pc, pcimg)
save_pcd(filename_save, pc_color)
if debug:
key = cv2.waitKey(0) & 0xFF
cv2.destroyAllWindows()