You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
/opt/DL/tensorflow/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py in call(self, inputs, *args, **kwargs)
755 if not in_deferred_mode:
756 self._in_call = True
--> 757 outputs = self.call(inputs, *args, **kwargs)
758 self._in_call = False
759 if outputs is None:
~/I.../keras_object_detection/ssd_keras/keras_layers/keras_layer_AnchorBoxes.py in call(self, x, mask)
203 offset_width = self.this_offsets
204 # Now that we have the offsets and step sizes, compute the grid of anchor box center points.
--> 205 cy = np.linspace(offset_height * step_height, (offset_height + feature_map_height - 1) * step_height, feature_map_height)
206 cx = np.linspace(offset_width * step_width, (offset_width + feature_map_width - 1) * step_width, feature_map_width)
207 cx_grid, cy_grid = np.meshgrid(cx, cy)
/opt/DL/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py in radd(self, other)
180 A Dimension whose value is the sum of self and other.
181 """
--> 182 return self + other
183
184 def sub(self, other):
/opt/DL/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py in add(self, other)
165 A Dimension whose value is the sum of self and other.
166 """
--> 167 other = as_dimension(other)
168 if self._value is None or other.value is None:
169 return Dimension(None)
/opt/DL/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py in as_dimension(value)
480 return value
481 else:
--> 482 return Dimension(value)
483
484
/opt/DL/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py in init(self, value)
38 if (not isinstance(value, compat.bytes_or_text_types) and
39 self._value != value):
---> 40 raise ValueError("Ambiguous dimension: %s" % value)
41 if self._value < 0:
42 raise ValueError("Dimension %d must be >= 0" % self._value)
ValueError: Ambiguous dimension: 0.5
Do you know why this error appears? How can I fix it?
The text was updated successfully, but these errors were encountered:
Hi everyone,
I'm trying to load the SSD300 for inferencing but I'm facing this ValueError:
ValueError Traceback (most recent call last)
in
25 iou_threshold=0.45,
26 top_k=200,
---> 27 nms_max_output_size=400)
28
29 # 2: Load the trained weights into the model.
~/.../keras_ssd300.py in ssd_300(image_size, n_classes, mode, l2_regularization, min_scale, max_scale, scales, aspect_ratios_global, aspect_ratios_per_layer, two_boxes_for_ar1, steps, offsets, clip_boxes, variances, coords, normalize_coords, subtract_mean, divide_by_stddev, swap_channels, confidence_thresh, iou_threshold, top_k, nms_max_output_size, return_predictor_sizes)
340 conv4_3_norm_mbox_priorbox = AnchorBoxes(img_height, img_width, this_scale=scales[0], next_scale=scales[1], aspect_ratios=aspect_ratios[0],
341 two_boxes_for_ar1=two_boxes_for_ar1, this_steps=steps[0], this_offsets=offsets[0], clip_boxes=clip_boxes,
--> 342 variances=variances, coords=coords, normalize_coords=normalize_coords, name='conv4_3_norm_mbox_priorbox')(conv4_3_norm_mbox_loc)
343 fc7_mbox_priorbox = AnchorBoxes(img_height, img_width, this_scale=scales[1], next_scale=scales[2], aspect_ratios=aspect_ratios[1],
344 two_boxes_for_ar1=two_boxes_for_ar1, this_steps=steps[1], this_offsets=offsets[1], clip_boxes=clip_boxes,
/opt/DL/tensorflow/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py in call(self, inputs, *args, **kwargs)
755 if not in_deferred_mode:
756 self._in_call = True
--> 757 outputs = self.call(inputs, *args, **kwargs)
758 self._in_call = False
759 if outputs is None:
~/I.../keras_object_detection/ssd_keras/keras_layers/keras_layer_AnchorBoxes.py in call(self, x, mask)
203 offset_width = self.this_offsets
204 # Now that we have the offsets and step sizes, compute the grid of anchor box center points.
--> 205 cy = np.linspace(offset_height * step_height, (offset_height + feature_map_height - 1) * step_height, feature_map_height)
206 cx = np.linspace(offset_width * step_width, (offset_width + feature_map_width - 1) * step_width, feature_map_width)
207 cx_grid, cy_grid = np.meshgrid(cx, cy)
/opt/DL/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py in radd(self, other)
180 A Dimension whose value is the sum of
self
andother
.181 """
--> 182 return self + other
183
184 def sub(self, other):
/opt/DL/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py in add(self, other)
165 A Dimension whose value is the sum of
self
andother
.166 """
--> 167 other = as_dimension(other)
168 if self._value is None or other.value is None:
169 return Dimension(None)
/opt/DL/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py in as_dimension(value)
480 return value
481 else:
--> 482 return Dimension(value)
483
484
/opt/DL/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py in init(self, value)
38 if (not isinstance(value, compat.bytes_or_text_types) and
39 self._value != value):
---> 40 raise ValueError("Ambiguous dimension: %s" % value)
41 if self._value < 0:
42 raise ValueError("Dimension %d must be >= 0" % self._value)
ValueError: Ambiguous dimension: 0.5
Do you know why this error appears? How can I fix it?
The text was updated successfully, but these errors were encountered: