-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPairwiseDistance.lua
91 lines (77 loc) · 2.77 KB
/
PairwiseDistance.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
local PairwiseDistance, parent = torch.class('nn.PairwiseDistance', 'nn.Module')
function PairwiseDistance:__init(p)
parent.__init(self)
-- state
self.gradInput = {}
self.diff = torch.Tensor()
self.norm = p or 2 -- Default using Euclidean distance
end
function PairwiseDistance:updateOutput(input)
self.output:resize(1)
if input[1]:dim() == 1 then
self.output:resize(1)
self.output[1]=input[1]:dist(input[2],self.norm)
elseif input[1]:dim() == 2 then
self.diff = self.diff or input[1].new()
self.diff:resizeAs(input[1])
local diff = self.diff:zero()
diff:add(input[1], -1, input[2])
diff:abs()
self.output:resize(input[1]:size(1))
self.output:zero()
self.output:add(diff:pow(self.norm):sum(2))
self.output:pow(1./self.norm)
else
error('input must be vector or matrix')
end
return self.output
end
local function mathsign(x)
if x==0 then return 2*torch.random(2)-3; end
if x>0 then return 1; else return -1; end
end
function PairwiseDistance:updateGradInput(input, gradOutput)
if input[1]:dim() > 2 then
error('input must be vector or matrix')
end
self.gradInput[1] = (self.gradInput[1] or input[1].new()):resize(input[1]:size())
self.gradInput[2] = (self.gradInput[2] or input[2].new()):resize(input[2]:size())
self.gradInput[1]:copy(input[1])
self.gradInput[1]:add(-1, input[2])
if self.norm==1 then
self.gradInput[1]:apply(mathsign)
else
-- Note: derivative of p-norm:
-- d/dx_k(||x||_p) = (x_k * abs(x_k)^(p-2)) / (||x||_p)^(p-1)
if (self.norm > 2) then
self.gradInput[1]:cmul(self.gradInput[1]:clone():abs():pow(self.norm-2))
end
if (input[1]:dim() > 1) then
self.outExpand = self.outExpand or self.output.new()
self.outExpand:resize(self.output:size(1), 1)
self.outExpand:copy(self.output)
self.outExpand:add(1.0e-6) -- Prevent divide by zero errors
self.outExpand:pow(-(self.norm-1))
self.gradInput[1]:cmul(self.outExpand:expand(self.gradInput[1]:size(1),
self.gradInput[1]:size(2)))
else
self.gradInput[1]:mul(math.pow(self.output[1] + 1e-6, -(self.norm-1)))
end
end
if input[1]:dim() == 1 then
self.gradInput[1]:mul(gradOutput[1])
else
self.grad = self.grad or gradOutput.new()
self.ones = self.ones or gradOutput.new()
self.grad:resizeAs(input[1]):zero()
self.ones:resize(input[1]:size(2)):fill(1)
self.grad:addr(gradOutput, self.ones)
self.gradInput[1]:cmul(self.grad)
end
self.gradInput[2]:zero():add(-1, self.gradInput[1])
return self.gradInput
end
function PairwiseDistance:clearState()
nn.utils.clear(self, 'diff', 'outExpand', 'grad', 'ones')
return parent.clearState(self)
end