-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathorganize_results.m
123 lines (83 loc) · 2.98 KB
/
organize_results.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
%% Simulations: Locate simulation results files
sim_results_fpath = '.\simulation_data\results\';
results_folders = {'prior111\','prior121\'};
num_folders = length(results_folders);
files_to_use = 1:15;
%% Simulations: Collect summary statistics from simulation results files for Warp Condition x Num Nrn data
% Create another struct with all of the results
% Struct(i,j,k) gives the ith prior, jth warp condition (no, weak, strong) and kth
% number of neurons (10,20, 50, 100, 200)
for fold_num = 1:num_folders
sim_results_fnames = dir([sim_results_fpath results_folders{fold_num}]);
sim_results_fnames = sim_results_fnames(3:end); % First 2 are '.' and '..'
for fnum_idx = 1:length(files_to_use)
fnum = files_to_use(fnum_idx);
load([sim_results_fpath results_folders{fold_num} sim_results_fnames(fnum).name])
% Determine which warp condition this is
weak = strfind(sim_results_fnames(fnum).name,'weak');
strong = strfind(sim_results_fnames(fnum).name,'strong');
if weak
row = 2;
elseif strong
row = 3;
else
row = 1;
end
% Determine how many neurons there are
num_nrn = Results(1).description.num_nrn;
if num_nrn == 10
col = 1;
elseif num_nrn == 20
col = 2;
elseif num_nrn == 50
col = 3;
elseif num_nrn == 100
col = 4;
elseif num_nrn == 200
col = 5;
end
SummaryStats(fold_num,row,col).Results = Results;
SummaryStats(fold_num,row,col).File_name = sim_results_fnames(fnum).name;
end
end
%% Real data: Collect effect sizes for different conditions
% Recent
file_loc = '.\results\conditions\M1\';
% file_loc = '.\results\conditions\M2\';
files = dir(file_loc);
files = files(3:end); % First 2 are . and ..
num_files = length(files);
for fnum = 1:num_files
% Load file
fname = files(fnum).name;
load([file_loc fname])
% Stick it in struct
EffectSizes(fnum).Results = Results;
EffectSizes(fnum).file_name = fname;
end
%% Real data: Collect effect sizes for different velocity thresholds
file_loc = '.\results\thresholds\';
files = dir(file_loc);
files = files(3:end); % First 2 are . and ..
num_files = length(files);
for fnum = 1:num_files
% Load file
fname = files(fnum).name;
load([file_loc fname])
% Stick it in struct
EffectSizes(fnum).Results = Results;
EffectSizes(fnum).file_name = fname;
end
%% Real data: Collect effect size for different time bin sizes
file_loc = '.\results\bin_sizes\';
files = dir(file_loc);
files = files(3:end); % First 2 are . and ..
num_files = length(files);
for fnum = 1:num_files
% Load file
fname = files(fnum).name;
load([file_loc fname])
% Stick it in struct
EffectSizes(fnum).Results = Results;
EffectSizes(fnum).file_name = fname;
end