-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathbinary_search.c
58 lines (48 loc) · 1.96 KB
/
binary_search.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
/*******************************************************************************
*
* Program: Binary Search Algorithm
*
* Description: Example of implementing the binary search algorithm in C.
*
* YouTube Lesson: https://www.youtube.com/watch?v=Uuyv88Tn9iU
*
* Author: Kevin Browne @ https://portfoliocourses.com
*
*******************************************************************************/
#include <stdio.h>
int binary_search(int a[], int e, int l, int r);
int main()
{
// if we want to find an element's index in an unsorted list, we could search
// from left to right
int unsorted[] = {9,5,13,3,8,7,2,12,6,10,4,11,1};
// if we want to find an element's index in a sorted list, we could take
// advantage of the fact that the list is sorted with the binary search
// algorithm
int sorted[] = {1,2,3,4,5,6,7,8,9,10,11,12,13};
// test the function
int index = binary_search(sorted, 12, 0, 12);
printf("index of 14: %d\n", index);
return 0;
}
// Returns the index of element e in array a, searching for the element between
// the left index l and the right index r. Applies the binary search algorithm
// recursively to conduct the search. Returns -1 if element isn't in the array.
int binary_search(int a[], int e, int l, int r)
{
// find the mid-way index between index l and index r
int mid = l + (r - l) / 2;
// if l is ever > r, it means the element is not in the array
if (l > r) return -1;
// if we've found the element at the mid-way index, return the index
// else if the element MUST be in the left-portion of the portion of the
// array we are currently looking at, search for it in this portion
// else if the element MUST be in the right-portion of the portion of the
// array we are currently looking at, search for it in this portion
if (a[mid] == e)
return mid;
else if (a[mid] > e)
return binary_search(a, e, l, mid - 1);
else
return binary_search(a, e, mid + 1, r);
}