-
Notifications
You must be signed in to change notification settings - Fork 3
/
bst-linked-list.cpp
267 lines (230 loc) · 6.14 KB
/
bst-linked-list.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <ostream>
#include <string>
using namespace std;
struct node {
int key_value;
node *left;
node *right;
};
class BinarySearchTree {
public:
BinarySearchTree();
~BinarySearchTree();
void insert(int key);
node *search(int key);
void *delete_(int key);
void Inorder_traversal();
void Preorder_traversal();
void Postorder_traversal();
void convert_to_linkedlist();
int getHeight();
void destroy_tree();
void printTree();
private:
void destroy_tree(node *leaf);
int maxDepth(node *leaf);
node *insert(int key, node *leaf);
void Inorder_traversal(node *root);
void Preorder_traversal(node *root);
void Postorder_traversal(node *root);
void printBT(const string &prefix, node *node, bool isLeft);
node *minValueNode(node *node);
node *search(int key, node *leaf);
node *delete_(int key, node *leaf);
node *root;
};
//-------------------------- IMplemenetataion======================
BinarySearchTree::BinarySearchTree() { root = NULL; }
BinarySearchTree::~BinarySearchTree() { destroy_tree(); }
void BinarySearchTree::destroy_tree(node *leaf) {
if (leaf != NULL) {
destroy_tree(leaf->left);
destroy_tree(leaf->right);
delete leaf;
}
}
node *BinarySearchTree::search(int key, node *leaf) {
if (leaf != NULL) {
if (key == leaf->key_value)
return leaf;
if (key < leaf->key_value)
return search(key, leaf->left);
else
return search(key, leaf->right);
} else
return NULL;
}
node *BinarySearchTree::insert(int key, node *leaf) {
if (leaf == NULL) {
node *head = new node;
head->key_value = key;
head->left = NULL;
head->right = NULL;
return head;
} else {
if (key > leaf->key_value) {
leaf->right = insert(key, leaf->right);
} else {
leaf->left = insert(key, leaf->left);
}
return leaf;
}
}
void BinarySearchTree::insert(int key) {
if (root != NULL)
insert(key, root);
else {
root = new node;
root->key_value = key;
root->left = NULL;
root->right = NULL;
}
}
void BinarySearchTree::Inorder_traversal() {
std::cout << "Inorder Traversal" << std::endl;
Inorder_traversal(root);
std::cout << std::endl;
}
void BinarySearchTree::Inorder_traversal(node *root) {
if (root != NULL) {
Inorder_traversal(root->left);
cout << " " << root->key_value;
Inorder_traversal(root->right);
}
}
void BinarySearchTree::Preorder_traversal() {
std::cout << "Preorder traversal" << std::endl;
Preorder_traversal(root);
std::cout << std::endl;
}
void BinarySearchTree::Preorder_traversal(node *root) {
if (root != NULL) {
cout << " " << root->key_value;
Preorder_traversal(root->left);
Preorder_traversal(root->right);
}
}
void BinarySearchTree::Postorder_traversal() {
std::cout << "PostOrder Traversal" << std::endl;
Postorder_traversal(root);
std::cout << std::endl;
}
void BinarySearchTree::Postorder_traversal(node *root) {
if (root != NULL) {
Postorder_traversal(root->left);
Postorder_traversal(root->right);
cout << " " << root->key_value;
}
}
int BinarySearchTree::maxDepth(node *root) {
if (root == NULL)
return 0;
else {
int leftDepth = maxDepth(root->left);
int rightDepth = maxDepth(root->right);
if (leftDepth > rightDepth) {
return rightDepth + 1;
} else {
return leftDepth + 1;
}
}
}
void flatten(node *root) {
// base condition- return if root is NULL
// or if it is a leaf node
if (root == NULL || root->left == NULL && root->right == NULL) {
return;
}
// if root->left exists then we have
// to make it root->right
if (root->left != NULL) {
// move left recursively
flatten(root->left);
// store the node root->right
node *tmpRight = root->right;
root->right = root->left;
root->left = NULL;
// find the position to insert
// the stored value
node *t = root->right;
while (t->right != NULL) {
t = t->right;
}
// insert the stored value
t->right = tmpRight;
}
flatten(root->right);
}
void BinarySearchTree::convert_to_linkedlist() { flatten(root); }
int BinarySearchTree::getHeight() { return maxDepth(root); }
node *BinarySearchTree::minValueNode(struct node *node) {
struct node *current = node;
/* loop down to find the leftmost leaf */
while (current && current->left != NULL)
current = current->left;
return current;
}
node *BinarySearchTree::delete_(int key, node *root) {
if (root == NULL)
return root;
if (key < root->key_value)
root->left = delete_(key, root->left);
else if (key > root->key_value)
root->right = delete_(key, root->right);
else {
if (root->left == NULL && root->right == NULL)
return NULL;
else if (root->left == NULL) {
node *temp = root->right;
free(root);
return temp;
} else if (root->right == NULL) {
node *temp = root->left;
free(root);
return temp;
}
node *temp = minValueNode(root->right);
root->key_value = temp->key_value;
root->right = delete_(temp->key_value, root->right);
}
return root;
}
void *BinarySearchTree::delete_(int key) {
if (root != NULL) {
delete_(key, root);
}
return nullptr;
}
void BinarySearchTree::printBT(const string &prefix, node *node, bool isLeft) {
if (node != nullptr) {
std::cout << prefix;
std::cout << (isLeft ? "├──" : "└──");
// print the value of the node
std::cout << node->key_value << std::endl;
// enter the next tree level - left and right branch
printBT(prefix + (isLeft ? "│ " : " "), node->left, true);
printBT(prefix + (isLeft ? "│ " : " "), node->right, false);
}
}
void BinarySearchTree::printTree() { printBT("", root, false); }
node *BinarySearchTree::search(int key) { return search(key, root); }
void BinarySearchTree::destroy_tree() { destroy_tree(root); }
int main(int argc, char const *argv[]) {
BinarySearchTree bst;
bst.insert(10);
bst.insert(7);
bst.insert(8);
bst.insert(1);
bst.insert(9);
bst.insert(2);
bst.insert(12);
bst.insert(5);
bst.printTree();
bst.Inorder_traversal();
bst.convert_to_linkedlist();
bst.printTree();
return 0;
}