-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransform.py
55 lines (45 loc) · 2.08 KB
/
transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import numpy as np
import cv2
# pts is the list of four points(x,y) specifying the coordinates of the rectangle
def order_points(pts):
# sample pts: [[x1,y1],[x2,y2],[x3,y3],[x4,y4]] this can be arbitary
# initialize a list of coodinates
# first-entry: top-left corner, with the smallest x+y sum
# second-entry: top-right corner, with the smallest x-y difference
# third-entry: botton-right, with the largest x+y sum
# fourth-entry: bottom-left , with the largest x-y difference
rect =np.zeros((4,2), dtype='float32')
s = pts.sum(axis = 1)
rect[0] = pts[np.argmin(s)] # the top-left corner will have the minimum value
rect[2] = pts[np.argmax(s)] # the bottom-right corner will have the maximumn value
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)] # the top-right corner will have least difference
rect[3] = pts[np.argmax(diff)] # the bottom-left corner will have largest difference
return rect
def four_transform(image, pts):
# Obtaining a constant ordered points from the given points
rect = order_points(pts)
(tl, tr, br, bl) = rect
# computing the maximum width of the new image,
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
# computing the maximum height of the new image
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
# now getting the dimensions of the new image, for a consistent ordering representation
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype = "float32")
#
#rect: coordinates of quadrangle vertices
#dst: coordinates of the corresponding quarangle vertices in destination image
#M: actual transformation matrix
#warped: top-down view of the image
#compute the perpective transform matrix and the apply it
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
return warped