forked from lijingsdu/sessionRec_NARM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexample_preprocess.py
230 lines (186 loc) · 6.08 KB
/
example_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import time
import csv
import pickle
import operator
import numpy as np
# Load .csv dataset
with open("data_raw/dataset-train-diginetica/train-item-views.csv", "rb") as f:
reader = csv.DictReader(f, delimiter=';')
sess_clicks = {}
sess_date = {}
ctr = 0
curid = -1
curdate = None
for data in reader:
sessid = data['sessionId']
if curdate and not curid == sessid:
date = time.mktime(time.strptime(curdate, '%Y-%m-%d'))
sess_date[curid] = date
curid = sessid
item = data['itemId']
curdate = data['eventdate']
if sess_clicks.has_key(sessid):
sess_clicks[sessid] += [item]
else:
sess_clicks[sessid] = [item]
ctr += 1
if ctr % 100000 == 0:
print ('Loaded', ctr)
date = time.mktime(time.strptime(curdate, '%Y-%m-%d'))
sess_date[curid] = date
# Filter out length 1 sessions
for s in sess_clicks.keys():
if len(sess_clicks[s]) == 1:
del sess_clicks[s]
del sess_date[s]
# Count number of times each item appears
iid_counts = {}
for s in sess_clicks:
seq = sess_clicks[s]
for iid in seq:
if iid_counts.has_key(iid):
iid_counts[iid] += 1
else:
iid_counts[iid] = 1
sorted_counts = sorted(iid_counts.items(), key=operator.itemgetter(1))
for s in sess_clicks.keys():
curseq = sess_clicks[s]
filseq = filter(lambda i: iid_counts[i] >= 5, curseq)
if len(filseq) < 2:
del sess_clicks[s]
del sess_date[s]
else:
sess_clicks[s] = filseq
# Split out test set based on dates
dates = sess_date.items()
maxdate = dates[0][1]
for _, date in dates:
if maxdate < date:
maxdate = date
# 7 days for test
splitdate = maxdate - 86400 * 7
print('Split date', splitdate)
train_sess = filter(lambda x: x[1] < splitdate, dates)
test_sess = filter(lambda x: x[1] > splitdate, dates)
# Sort sessions by date
train_sess = sorted(train_sess, key=operator.itemgetter(1))
test_sess = sorted(test_sess, key=operator.itemgetter(1))
# Choosing item count >=5 gives approximately the same number of items as reported in paper
item_dict = {}
item_ctr = 1
train_seqs = []
train_dates = []
my_train_ctr = 0
# Convert training sessions to sequences and renumber items to start from 1
for s, date in train_sess:
seq = sess_clicks[s]
outseq = []
for i in seq:
if item_dict.has_key(i):
outseq += [item_dict[i]]
else:
outseq += [item_ctr]
item_dict[i] = item_ctr
item_ctr += 1
if len(outseq) < 2: # Doesn't occur
continue
my_train_ctr += 1
train_seqs += [outseq]
train_dates += [date]
print("Number of training sessions:")
print(my_train_ctr)
test_seqs = []
test_dates = []
my_test_ctr = 0
# Convert test sessions to sequences, ignoring items that do not appear in training set
for s, date in test_sess:
seq = sess_clicks[s]
outseq = []
for i in seq:
if item_dict.has_key(i):
outseq += [item_dict[i]]
if len(outseq) < 2:
continue
my_test_ctr += 1
test_seqs += [outseq]
test_dates += [date]
print("Number of test sessions:")
print(my_test_ctr)
print("Number of items:")
print(len(item_dict))
# generate item feature matrix
with open("data_raw/dataset-train-diginetica/products.csv", "rb") as f:
reader = csv.DictReader(f, delimiter=';')
prices_dict = {} # mapped item id's to prices
for data in reader:
# {'itemId': '1', 'pricelog2': '10', 'product.name.tokens': '4875,776,56689,18212,18212,4896'}
item_id = data['itemId']
price = int(data['pricelog2'])
if not item_dict.has_key(item_id):
continue
mapped_item_id = item_dict[item_id]
prices_dict[mapped_item_id] = price
assert len(prices_dict) == len(item_dict)
with open("data_raw/dataset-train-diginetica/product-categories.csv", "rb") as f:
reader = csv.DictReader(f, delimiter=';')
categories_dict = {} # mapped item id's to category id's
for data in reader:
item_id = data['itemId']
cat_id = int(data['categoryId'])
if not item_dict.has_key(item_id):
continue
mapped_item_id = item_dict[item_id]
categories_dict[mapped_item_id] = cat_id
assert len(categories_dict) == len(item_dict)
# map price to feature vector
all_unique_prices = list(set(prices_dict.values()))
def price_to_vec(price):
vec = [0.0] * len(all_unique_prices)
index = all_unique_prices.index(price)
vec[index] = 1.0
return vec
# map category to feature vector
all_unique_cats = list(set(categories_dict.values()))
def cat_to_vec(cat):
vec = [0.0] * len(all_unique_cats)
index = all_unique_cats.index(cat)
vec[index] = 1.0
return vec
# get all feature vectors
feature_matrix = np.random.rand(len(prices_dict), len(all_unique_prices) + len(all_unique_cats)) # items X feature vec size
for mapped_item_id, price in prices_dict.iteritems():
cat = categories_dict[mapped_item_id]
# mapped item id's start from 1, not 0
row_index = mapped_item_id - 1
price_feature_vec = price_to_vec(price)
cat_feature_vec = cat_to_vec(cat)
feature_vec = price_feature_vec + cat_feature_vec
# insert
feature_matrix[row_index] = feature_vec
def process_seqs(iseqs, idates):
out_seqs = []
out_dates = []
labs = []
for seq, date in zip(iseqs, idates):
for i in range(1, len(seq)):
tar = seq[-i]
labs += [tar]
out_seqs += [seq[:-i]]
out_dates += [date]
return out_seqs, out_dates, labs
tr_seqs, tr_dates, tr_labs = process_seqs(train_seqs,train_dates)
te_seqs, te_dates, te_labs = process_seqs(test_seqs,test_dates)
train = (tr_seqs, tr_labs)
test = (te_seqs, te_labs)
print("Number of training examples (sequences):")
print(len(tr_labs))
print("Number of test examples (sequences):")
print(len(te_labs))
f1 = open('data/digi_train.pkl', 'w')
pickle.dump(train, f1)
f1.close()
f2 = open('data/digi_test.pkl', 'w')
pickle.dump(test, f2)
f2.close()
np.save('data/digi_item_feature_matrix.npy', feature_matrix)
print('Done.')