forked from masa16/narray
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSPEC.en
307 lines (258 loc) · 9.38 KB
/
SPEC.en
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
Ruby/NArray ver 0.5.9p8 (2010-01-16) by Masahiro TANAKA
Class method:
NArray.new(typecode, size, ...) create new NArray. initialize with 0.
NArray.byte(size,...) 1 byte unsigned integer
NArray.sint(size,...) 2 byte signed integer
NArray.int(size,...) 4 byte signed integer
NArray.sfloat(size,...) single precision float
NArray.float(size,...) double precision float
NArray.scomplex(size,...) single precision complex
NArray.complex(size,...) double precision complex
NArray.object(size,...) Ruby object
all above method initialize with 0 or nil.
NArray.to_na(array) convert to NArray
NArray.to_na(string,type[,size,...])
NArray[...]
NArray[1,5,10.0] #=> NArray.float(3):[1.0, 5.0, 10.0]
NArray[1..10] #=> NArray.int(10):[1,2,3,4,5,6,7,8,9,10]
Class constant:
CLASS_DIMENSION # of dimension treated as data.
0 for NArray, 1 for NVector, 2 for NMatrix.
NArray information
self.dim Return the dimension = the number of indices
self.rank same as dim
self.shape Return the array of sizes of each index
self.total Return the number of total elements
Slicing Array
- Index components: Integer, Range, Array, true.
- Index order: FORTRAN type.
a[ 1, 2, -1 ] element slicing.
If negative, counts backward from the end.
Element-dimensions are contracted.
a[ 0..3, 4..1 ] extract in the range.
If the former of the range is bigger,
return elements in reversed order.
a[ [1,3,2,4] ] an array with the elements of the indices.
If `a' has multi-dimension but, in [],
single index is specified,
`a' is treated as a single dimension array.
a[ 1, 2..3, [1,3,2,4], true ] compound index.
This returns 3-dim array.
a[] same as a.dup.
a[ 0, true ] sams as a[0,0..-1]. `true' means all.
a[ false, 0 ] same as a[true,true,0], if a is a 3-d array,
`false' means ellipsis dimension.
a[ mask ] masking. "mask" is a byte NArray with its
length equal to that of "a". According to the
value of each element of mask, the corresponding
element in "a" is eliminated (when 0) or
retained (when not 0).
Example:
a=NArray.float(2,2).indgen!
p a[ a.lt 3 ]
--> [ 0.0, 1.0, 2.0 ]
(Here, a.lt 3 gives a byte NArray)
(This is also done by a[ (a.lt 3).where ])
- A 2-or-more-dim array object with only one argument in `[ ]',
is treated as a flat 1-d array.
e.g.: a[3] is same as a[0,1] if a is 3x3 array.
- self.slice(...) Same as self[...] but keeps the rank of
original array by not elimiting dimensions
whose length became equal to 1 (which self[]
does). This is not the case with the
1-dimensional indexing and masking (same as []).
Replacing Elements -- Same rule as slicing
a[ 1, 2, 3 ] = 1
a[ 0..3, 1..4, 2..5 ] = 2
a[ [1,3,2,4], true ] = 3
a[] = 4 Same as a.fill!(4)
a[0..2] = b[1..5] --> Error! due to different num of elements.
a[1,2] = b[0..2,1..3] Storing elements from index [1,2]
( a[1,2]=b[0,1],a[2,2]=b[1,1],... )
a[0..2,0..3] = b[0..2,1] Storing repetitively
( a[0,0]=b[0,1],..,a[0,3]=b[0,1] )
Filling values
self.indgen!([start[,step]]) Generate index;
Set values from 'start' with 'step' increment
self.fill!(value) Fill elements with 'value'
self.random!(max) Set random values between 0<=x<max
using MT19337
self.randomn Set Normally distributed random values
with mean=0, dispersion=1 (Box-Muller)
NArray.srand([seed]) Set random seed.
A time-depend seed is choosed if omitted.
Operation: performed element by element
a = NArray.float(3,3).indgen
b = NArray.float(3,3).fill(10)
c = a*b # --> NArray.float(3,3)
a = NArray.float(3,1).indgen
b = NArray.float(1,3).fill(10)
c = a*b # --> NArray.float(3,3) -- size=1 dimension is extensible.
Arithmetic operator
-self
self + other
self - other
self * other
self / other
self % other
self ** other
self.abs
self.add! other
self.sbt! other
self.mul! other
self.div! other
self.mod! other
Bitwise operator (only for integers)
~self
self & other
self | other
self ^ other
Comparison
-- element-wise comparison, results in BYTE-type NArray;
Note that not true nor false is returned.
self.eq other ( == operator was obsolete after ver 0.5.4 )
self.ne other
self.gt other
self > other
self.ge other
self >= other
self.lt other
self < other
self.le other
self <= other
self.and other element-wise condition.
self.or other
self.xor other
self.not other
self.all? true if all the elements are true.
self.any? true if any element is true.
self.none? true if none of the element is true.
self.where Return NArray of indices where elements are true.
self.where2 Return Array including two NArrays of indices,
where elements are true and false, respectively.
e.g.: idx_t,idx_f = (a>12).where2
Statistics
self.sum(dim,..) Summation
self.mean(dim,..) Mean
self.stddev(dim,..) Standard deviation
self.rms(dim,..) Root mean square
self.rmsdev(dim,..) Root mean square deviation
self.min(dim,..) Minimum
self.max(dim,..) Maximum
note: * If dimensions are specified, statistics are performed
on those dimensions and the rest dimensions are kept.
* Range can be used.
* If dimension is not specified, statistics are performed
for all the elements.
self.median(dim) Median in 0..dim (All dimensions if omitted)
Sort
self.sort(dim) Sort in 0..dim (All dimensions if omitted)
self.sort_index(dim) Return index of Sort result.
self[self.sort_index] equals to self.sort.
Transpose
self.transpose( dim0, dim1, .. )
Transpose array.
The dim0-th dimension goes to the 0-th dimension of new array.
Negative number counts backward.
transpose(-1,1..-2,0) is replacement between the first and the last.
Changing Shapes of indices
self.reshape!(size,...)
self.shape=(size,...)
self.newdim=(dim) Insert new dimension with size=1
Reference to another NArray
self.refer create NArray obj referring to another NArray
self.reshape(size,...) same as self.refer.reshape!
self.newdim(dim,...) same as self.refer.newdim!
Type conversion
self.floor Return integer NArray whose elements processed 'floor'
self.ceil
self.round
self.to_f Convert NArray type to float
self.to_i Convert NArray type to integer
self.to_a Convert NArray type to Ruby-object
self.to_s Convert NArray data to String as a binary data.
self.to_string Convert NArray type to Ruby-object
containing Strings as printed elements
Iteration
self.each {|i| ...}
self.collect {|i| ...}
self.collect! {|i| ...}
Byte swap
self.swap_byte swap byte order
self.hton convert to network byte order
self.ntoh
self.htov convert to VAX byte order
self.vtoh
Boolean / mask related
self.count_false count # of elements whose value == 0 (only for
byte type)
self.count_true count # of elements whose value != 0 (only for
byte type)
self.mask( mask ) same as self[ mask ], but exclusively for masking.
Unlike [], a int or sint mask is accepted.
Complex compound number
self.real
self.imag
self.conj
self.conj!
self.angle atan2(self.imag, self.real)
self.imag= other set imaginary part
self.im multiply by imaginary unit
NMath module
sqrt(x)
exp(x)
log(x)
log10(x)
log2(x)
atan2(x,y)
sin,cos,tan
sinh,cosh,tanh
asin,acos,atan
asinh,acosh,atanh
csc,sec,cot
csch,sech,coth
acsc,asec,acot
acsch,asech,acoth
covariance (no idea why NMath::covariance doesn't work)
FFTW module
(separate module)
fftw(x,[1|-1])
convol(a,b) convolution with FFTW
NMatrix
Subclass of NArray. First 2 dimensions are used as Matrix.
Residual dimensions are treated as Multi-dimensional array.
The order of Matrix dimensions is opposite from
the notation of mathematics: a_ij => a[j,i]
Methods:
+,- enable if other is NMatrix.
* Matrix product if other is NMatrix or NVector.
Scalar product if other is Numeric or NArray.
ex: NMatrix[[1,2],[3,4]] * [1,10]
== NMatrix[ [[1,2],[3,4]], [[10,20],[30,40]] ]
/ Scalar division if other is Numeric or NArray.
Solve Linear Equation with LU factorization
if other is square NMatrix. a/b == b.lu.solve(a)
transpose transpose Matrix dimensions if argument omitted.
diagonal(val)
diagonal!(val) set val to diagonal elements. (set 1 if omitted)
unit set 1 to diagonal elements.
inverse Inverse matrix.
lu compute LU factorization.
return NMatrixLU class object.
NVector
Subclass of NArray. First 1 dimension is used as Vector.
Residual dimensions are treated as Multi-dimensional array.
Methods:
+,- enable if other is NVector.
* Matrix product if other is NMatrix.
Inner product if other is NVector.
Scalar product if other is Numeric or NArray.
/ Scalar division if other is Numeric or NArray.
Solve Linear Equation with LU factorization
if other is square NMatrix. v/m == m.lu.solve(v)
NMatrixLU
Created by NMatrix#lu method.
Including LU (NMatrix) and pivot (NVector).
Methods:
solve(other) Solve with the result of LU factorization.
other should be NMatrix or NVector instance.