-
Notifications
You must be signed in to change notification settings - Fork 140
/
Copy pathIntraday-240,3-RF.py
149 lines (122 loc) · 5.09 KB
/
Intraday-240,3-RF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import pandas as pd
import numpy as np
import random
import time
import pickle
from sklearn.ensemble import RandomForestClassifier
from Statistics import Statistics
import os
SEED = 9
os.environ['PYTHONHASHSEED']=str(SEED)
random.seed(SEED)
np.random.seed(SEED)
SP500_df = pd.read_csv('data/SPXconst.csv')
all_companies = list(set(SP500_df.values.flatten()))
all_companies.remove(np.nan)
constituents = {'-'.join(col.split('/')[::-1]):set(SP500_df[col].dropna())
for col in SP500_df.columns}
constituents_train = {}
for test_year in range(1993,2016):
months = [str(t)+'-0'+str(m) if m<10 else str(t)+'-'+str(m)
for t in range(test_year-3,test_year) for m in range(1,13)]
constituents_train[test_year] = [list(constituents[m]) for m in months]
constituents_train[test_year] = set([i for sublist in constituents_train[test_year]
for i in sublist])
def trainer(train_data,test_data):
random.seed(SEED)
np.random.seed(SEED)
train_x,train_y = train_data[:,2:-2],train_data[:,-1]
train_y = train_y.astype('int')
print('Started training')
clf = RandomForestClassifier(n_estimators=1000,
max_depth=10,
random_state = SEED,
n_jobs=-1)
clf.fit(train_x,train_y)
print('Completed ',clf.score(train_x,train_y))
dates = list(set(test_data[:,0]))
predictions = {}
for day in dates:
test_d = test_data[test_data[:,0]==day]
test_d = test_d[:,2:-2]
predictions[day] = clf.predict_proba(test_d)[:,1]
return predictions
def simulate(test_data,predictions):
rets = pd.DataFrame([],columns=['Long','Short'])
k = 10
for day in sorted(predictions.keys()):
preds = predictions[day]
test_returns = test_data[test_data[:,0]==day][:,-2]
top_preds = predictions[day].argsort()[-k:][::-1]
trans_long = test_returns[top_preds]
worst_preds = predictions[day].argsort()[:k][::-1]
trans_short = -test_returns[worst_preds]
rets.loc[day] = [np.mean(trans_long),np.mean(trans_short)]
return rets
def create_label(df_open,df_close,perc=[0.5,0.5]):
if not np.all(df_close.iloc[:,0]==df_open.iloc[:,0]):
print('Date Index issue')
return
perc = [0.]+list(np.cumsum(perc))
label = (df_close.iloc[:,1:]/df_open.iloc[:,1:]-1).apply(
lambda x: pd.qcut(x.rank(method='first'),perc,labels=False), axis=1)
return label
def create_stock_data(df_close,df_open,st):
st_data = pd.DataFrame([])
st_data['Date'] = list(df_close['Date'])
st_data['Name'] = [st]*len(st_data)
daily_change = df_close[st]/df_open[st]-1
m = list(range(1,20))+list(range(20,241,20))
for k in m:
st_data['IntraR'+str(k)] = daily_change.shift(k)
for k in m:
st_data['CloseR'+str(k)] = df_close[st].pct_change(k).shift(1)
for k in m:
st_data['OverNR'+str(k)] = df_open[st]/df_close[st].shift(k)-1
st_data['R-future'] = daily_change
st_data['label'] = list(label[st])
st_data['Month'] = list(df_close['Date'].str[:-3])
st_data = st_data.dropna()
trade_year = st_data['Month'].str[:4]
st_data = st_data.drop(columns=['Month'])
st_train_data = st_data[trade_year<str(test_year)]
st_test_data = st_data[trade_year==str(test_year)]
return np.array(st_train_data),np.array(st_test_data)
result_folder = 'results-Intraday-240-3-RF'
for directory in [result_folder]:
if not os.path.exists(directory):
os.makedirs(directory)
for test_year in range(1993,2020):
print('-'*40)
print(test_year)
print('-'*40)
filename = 'data/Open-'+str(test_year-3)+'.csv'
df_open = pd.read_csv(filename)
filename = 'data/Close-'+str(test_year-3)+'.csv'
df_close = pd.read_csv(filename)
label = create_label(df_open,df_close)
stock_names = sorted(list(constituents[str(test_year-1)+'-12']))
train_data,test_data = [],[]
start = time.time()
for st in stock_names:
st_train_data,st_test_data = create_stock_data(df_close,df_open,st)
train_data.append(st_train_data)
test_data.append(st_test_data)
train_data = np.concatenate([x for x in train_data])
test_data = np.concatenate([x for x in test_data])
print('Created :',train_data.shape,test_data.shape,time.time()-start)
predictions = trainer(train_data,test_data)
returns = simulate(test_data,predictions)
result = Statistics(returns.sum(axis=1))
print('\nAverage returns prior to transaction charges')
result.shortreport()
with open(result_folder+'/predictions-'+str(test_year)+'.pickle', 'wb') as handle:
pickle.dump(predictions, handle, protocol=pickle.HIGHEST_PROTOCOL)
returns.to_csv(result_folder+'/avg_daily_rets-'+str(test_year)+'.csv')
with open(result_folder+"/avg_returns.txt", "a") as myfile:
res = '-'*30 + '\n'
res += str(test_year) + '\n'
res += 'Mean = ' + str(result.mean()) + '\n'
res += 'Sharpe = '+str(result.sharpe()) + '\n'
res += '-'*30 + '\n'
myfile.write(res)