-
Notifications
You must be signed in to change notification settings - Fork 140
/
Copy pathNextDay-240,1-LSTM.py
215 lines (177 loc) · 7.66 KB
/
NextDay-240,1-LSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import pandas as pd
import numpy as np
import random
import time
import pickle
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import StandardScaler,RobustScaler
from Statistics import Statistics
import tensorflow as tf
from tensorflow.keras.layers import CuDNNLSTM,LSTM,Dropout,Dense,Input
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, CSVLogger
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras import optimizers
import warnings
warnings.filterwarnings("ignore")
import os
SEED = 9
os.environ['PYTHONHASHSEED']=str(SEED)
random.seed(SEED)
np.random.seed(SEED)
tf.set_random_seed(SEED)
SP500_df = pd.read_csv('data/SPXconst.csv')
all_companies = list(set(SP500_df.values.flatten()))
all_companies.remove(np.nan)
constituents = {'-'.join(col.split('/')[::-1]):set(SP500_df[col].dropna())
for col in SP500_df.columns}
constituents_train = {}
for test_year in range(1993,2016):
months = [str(t)+'-0'+str(m) if m<10 else str(t)+'-'+str(m)
for t in range(test_year-3,test_year) for m in range(1,13)]
constituents_train[test_year] = [list(constituents[m]) for m in months]
constituents_train[test_year] = set([i for sublist in constituents_train[test_year]
for i in sublist])
def makeSimpleLSTM(cells=25):
inputs = Input(shape=(sequence_length,1))
x = LSTM(cells,activation='tanh', recurrent_activation='sigmoid',
input_shape=(sequence_length,1),
dropout=0.1,recurrent_dropout=0.1)(inputs)
outputs = Dense(2,activation='softmax')(x)
model = Model(inputs=inputs, outputs=outputs)
model.compile(loss='categorical_crossentropy',optimizer=optimizers.RMSprop(),
metrics=['accuracy'])
model.summary()
return model
def makeCuDNNLSTM(cells=25):
inputs = Input(shape=(sequence_length,1))
x = CuDNNLSTM(cells,return_sequences=False)(inputs)
x = Dropout(0.1)(x)
outputs = Dense(2,activation='softmax')(x)
model = Model(inputs=inputs, outputs=outputs)
model.compile(loss='categorical_crossentropy',optimizer=optimizers.RMSprop(),
metrics=['accuracy'])
model.summary()
return model
def callbacks_req(model_type='LSTM'):
csv_logger = CSVLogger(model_folder+'/training-log-'+model_type+'-'+str(test_year)+'.csv')
filepath = model_folder+"/model-" + model_type + '-' + str(test_year) + "-E{epoch:02d}.h5"
model_checkpoint = ModelCheckpoint(filepath, monitor='val_loss',save_best_only=True)
earlyStopping = EarlyStopping(monitor='val_loss',mode='min',patience=10,restore_best_weights=True)
return [csv_logger,earlyStopping,model_checkpoint]
def trainer(train_data,test_data,model_type='CuDNNLSTM'):
np.random.shuffle(train_data)
train_x,train_y = train_data[:,2:-2],train_data[:,-1]
train_x = np.reshape(train_x,(len(train_x),sequence_length,1))
train_y = np.reshape(train_y,(-1, 1))
enc = OneHotEncoder(handle_unknown='ignore')
enc.fit(train_y)
enc_y = enc.transform(train_y).toarray()
if model_type == 'LSTM':
model = makeSimpleLSTM()
elif model_type == 'CuDNNLSTM':
model = makeCuDNNLSTM()
else:
return
callbacks = callbacks_req(model_type)
model.fit(train_x,
enc_y,
epochs=1000,
validation_split=0.2,
callbacks=callbacks,
batch_size=512
)
dates = list(set(test_data[:,0]))
predictions = {}
for day in dates:
test_d = test_data[test_data[:,0]==day]
test_d = np.reshape(test_d[:,2:-2],(len(test_d),sequence_length,1))
predictions[day] = model.predict(test_d)[:,1]
return predictions
def trained(filename,train_data,test_data):
model = load_model(filename)
dates = list(set(test_data[:,0]))
predictions = {}
for day in dates:
test_d = test_data[test_data[:,0]==day]
test_d = np.reshape(test_d[:,2:-2],(len(test_d),sequence_length,1))
predictions[day] = model.predict(test_d)[:,1]
return predictions
def simulate(test_data,predictions):
rets = pd.DataFrame([],columns=['Long','Short'])
k = 10
for day in sorted(predictions.keys()):
preds = predictions[day]
test_returns = test_data[test_data[:,0]==day][:,-2]
top_preds = predictions[day].argsort()[-k:][::-1]
trans_long = test_returns[top_preds]
worst_preds = predictions[day].argsort()[:k][::-1]
trans_short = -test_returns[worst_preds]
rets.loc[day] = [np.mean(trans_long),np.mean(trans_short)]
return rets
def create_label(df,perc=[0.5,0.5]):
perc = [0.]+list(np.cumsum(perc))
label = df.iloc[:,1:].pct_change(fill_method=None)[1:].apply(
lambda x: pd.qcut(x.rank(method='first'),perc,labels=False), axis=1)
return label
def create_stock_data(df,st):
daily_change = df[st].pct_change()
st_data = pd.DataFrame([])
st_data['Date'] = list(df['Date'])
st_data['Name'] = [st]*len(st_data)
for k in range(240)[::-1]:
st_data['R'+str(k)] = daily_change.shift(k)
st_data['R-future'] = daily_change.shift(-1)
st_data['label'] = list(label[st])+[np.nan]
st_data['Month'] = list(df['Date'].str[:-3])
st_data = st_data.dropna()
trade_year = st_data['Month'].str[:4]
st_data = st_data.drop(columns=['Month'])
st_train_data = st_data[trade_year<str(test_year)]
st_test_data = st_data[trade_year==str(test_year)]
return np.array(st_train_data),np.array(st_test_data)
def Normalize(train_data,test_data,norm_type='StandardScalar'):
scaler = StandardScaler() if norm_type=='StandardScalar' else RobustScaler()
scaler.fit(train_data[:,2:-2])
train_data[:,2:-2] = scaler.transform(train_data[:,2:-2])
test_data[:,2:-2] = scaler.transform(test_data[:,2:-2])
model_folder = 'models-NextDay-240-1-LSTM'
result_folder = 'results-NextDay-240-1-LSTM'
for directory in [model_folder,result_folder]:
if not os.path.exists(directory):
os.makedirs(directory)
model_type = 'CuDNNLSTM'
norm_type = 'StandardScalar'
for test_year in range(1993,2020):
print('-'*40)
print(test_year)
print('-'*40)
filename = 'data/Close-'+str(test_year-3)+'.csv'
df = pd.read_csv(filename)
label = create_label(df)
stock_names = list(constituents[str(test_year-1)+'-12'])
train_data,test_data = [],[]
start = time.time()
for st in stock_names:
st_train_data,st_test_data = create_stock_data(df,st)
train_data.append(st_train_data)
test_data.append(st_test_data)
train_data = np.concatenate([x for x in train_data])
test_data = np.concatenate([x for x in test_data])
print('Created :',train_data.shape,test_data.shape,time.time()-start)
sequence_length = 240
Normalize(train_data,test_data,norm_type)
predictions = trainer(train_data,test_data,model_type)
returns = simulate(test_data,predictions)
result = Statistics(returns.sum(axis=1))
print('\nAverage returns prior to transaction charges')
result.shortreport()
with open(result_folder+'/predictions-'+str(test_year)+'.pickle', 'wb') as handle:
pickle.dump(predictions, handle, protocol=pickle.HIGHEST_PROTOCOL)
returns.to_csv(result_folder+'/avg_daily_rets-'+str(test_year)+'.csv')
with open(result_folder+"/avg_returns.txt", "a") as myfile:
res = '-'*30 + '\n'
res += str(test_year) + '\n'
res += 'Mean = ' + str(result.mean()) + '\n'
res += 'Sharpe = '+str(result.sharpe()) + '\n'
res += '-'*30 + '\n'
myfile.write(res)