This repository has been archived by the owner on Oct 5, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathks_aello.pyx
472 lines (393 loc) · 20.6 KB
/
ks_aello.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
#cython: boundscheck=False, wraparound=False, nonecheck=False, initializedcheck=False, cdivision=True
from libc.math cimport exp, pow, tgamma, sqrt, abs
from scipy.special.cython_special cimport hyp1f1
import numpy as np
cimport numpy as np
cdef double pi = 3.141592653589793238462643383279
#from integral - e
cdef double cye(int ia,int ja,int type, double r, double ie, double je, int n = 0, double x = 0.0):
cdef:
double p = ie + je
double q = ie*je / p
if n == 0:
if (type < 0) or (type > (ia + ja)):
return 0.0
elif (ia + ja + type) == 0:
return exp(-q*r*r)
elif ja == 0:
return (1/(2 * p)) * cye(ia-1,ja,type-1,r,ie,je) - (q*r/ie) * cye(ia-1,ja,type,r,ie,je) + \
(type+1) * cye(ia-1,ja,type+1,r,ie,je)
else:
return (1/(2 * p)) * cye(ia,ja-1,type-1,r,ie,je) + (q*r/je) * cye(ia,ja-1,type,r,ie,je) + \
(type+1) * cye(ia,ja-1,type+1,r,ie,je)
else:
return cye(ia+1,ja,type,r,ie,je,n-1,x) + x * cye(ia,ja,type,r,ie,je,n-1,x)
cdef double ovlp(int ia0, int ia1, int ia2, int ja0, int ja1, int ja2, int type, \
double r0, double r1, double r2, double ie, double je):
cdef double s
s = cye(ia0, ja0, type, r0, ie, je)
s *= cye(ia1, ja1, type, r1, ie, je)
s *= cye(ia2, ja2, type, r2, ie, je)
return s * pow(pi/(ie+je),1.5)
cdef double clmb(int l, int m, int n, int bf, double p, double r0, double r1, double r2):
cdef double t, s, nm
nm = sqrt(r0*r0 + r1*r1 + r2*r2)
t = p * nm * nm
s = 0.0
if (l+m+n) == 0:
s += pow(-2*p, bf) * boys(bf, t)
elif (l+m) == 0:
if n > 1:
s +=(n-1) * clmb(l,m,n-2,bf+1,p,r0,r1,r2)
s += r2 * clmb(l,m,n-1,bf+1,p,r0,r1,r2)
elif l == 0:
if m > 1:
s +=(m-1) * clmb(l,m-2,n,bf+1,p,r0,r1,r2)
s += r1 * clmb(l,m-1,n,bf+1,p,r0,r1,r2)
else:
if l > 1:
s +=(l-1) * clmb(l-2,m,n,bf+1,p,r0,r1,r2)
s += r0 * clmb(l-1,m,n,bf+1,p,r0,r1,r2)
return s
#boys function
cdef double boys(double m,double T):
return hyp1f1(m+0.5,m+1.5,-T)/(2.0*m+1.0)
cdef double tei(int al0, int al1, int al2, int al3, short[:,:] aa, double[:,:] an, double[:,:] ac, \
double[:,:] ae, double[:,:] ao, int i, int j, int k, int l):
cdef:
double s = 0.0
int mu, nu, vu, su, tu, psi, phi, chi, alpha, beta, gamma
double f, p, q, t1, s1, s2
double t2[3]
for mu in range(0, al0):
for nu in range(0, al1):
for vu in range(0, al2):
for su in range(0, al3):
f = an[i,mu] * an[j,nu] * an[k,vu] * an[l,su] * ac[i,mu] * ac[j,nu] * ac[k,vu] * ac[l,su]
p = ae[i,mu] + ae[j,nu]
q = ae[k,vu] + ae[l,su]
t1 = p*q/(p+q)
for tu in range(0, 3):
t2[tu] = (ae[i,mu]*ao[i,tu] + ae[j,nu]*ao[j,tu])/p - (ae[k,vu]*ao[k,tu] + ae[l,su]*ao[l,tu])/q
s1 = 0.0
for psi in range(0, aa[i,0]+aa[j,0]+1):
for phi in range(0, aa[i,1]+aa[j,1]+1):
for chi in range(0, aa[i,2]+aa[j,2]+1):
for alpha in range(0, aa[k,0]+aa[l,0]+1):
for beta in range(0, aa[k,1]+aa[l,1]+1):
for gamma in range(0, aa[k,2]+aa[l,2]+1):
s2 = cye(aa[i,0],aa[j,0],psi, ao[i,0]-ao[j,0],ae[i,mu],ae[j,nu]) * \
cye(aa[i,1],aa[j,1],phi, ao[i,1]-ao[j,1],ae[i,mu],ae[j,nu]) * \
cye(aa[i,2],aa[j,2],chi, ao[i,2]-ao[j,2],ae[i,mu],ae[j,nu])
s2*= cye(aa[k,0],aa[l,0],alpha, ao[k,0]-ao[l,0],ae[k,vu],ae[l,su]) * \
cye(aa[k,1],aa[l,1],beta, ao[k,1]-ao[l,1],ae[k,vu],ae[l,su]) * \
cye(aa[k,2],aa[l,2],gamma, ao[k,2]-ao[l,2],ae[k,vu],ae[l,su])
s2*= pow(-1, alpha+beta+gamma) * clmb(psi+alpha, phi+beta, chi+gamma, 0, t1, \
t2[0],t2[1],t2[2])
s1 += s2
s1 *= 2 * pow(pi, 2.5) / ((p*q) * sqrt(p+q))
s += s1 * f
return s
#|-------------------------------------dipole helper-------------------------------------|
cdef double mu(int[3] ia, int[3] ja, double ie, double je, double[3] ir, double[3] jr, double[3] kr, int direction):
# dipole moment
cdef:
double p = ie + je
double[3] q, ijr
int i
double u, v, t
for i in range(3):
q[i] = ((ie*ir[i] + je*jr[i])/p) - kr[i]
ijr[i] = ir[i] - jr[i]
if direction == 1:
u = cye(ia[0], ja[0], 1, ijr[0], ie, je) + q[0]* cye(ia[0], ja[0], 0, ijr[0], ie, je)
v = cye(ia[1], ja[1], 0, ijr[1], ie, je)
t = cye(ia[2], ja[2], 0, ijr[2], ie, je)
return u * v * t * pow(pi/p, 1.5)
if direction == 2:
u = cye(ia[0], ja[0], 0, ijr[0], ie, je)
v = cye(ia[1], ja[1], 1, ijr[1], ie, je) + q[1]* cye(ia[1], ja[1], 0, ijr[1], ie, je)
t = cye(ia[2], ja[2], 0, ijr[2], ie, je)
return u * v * t * pow(pi/p, 1.5)
if direction == 3:
u = cye(ia[0], ja[0], 0, ijr[0], ie, je)
v = cye(ia[1], ja[1], 0, ijr[1], ie, je)
t = cye(ia[2], ja[2], 1, ijr[2], ie, je) + q[2]* cye(ia[2], ja[2], 0, ijr[2], ie, je)
return u * v * t * pow(pi/p, 1.5)
#|---------------------------------end dipole helper-------------------------------------|
#|------------------------------------momentum helper------------------------------------|
cdef double ang(int[3] ia, int[3] ja, double ie, double je, double[3] ir, double[3] jr, double[3] kr, int direction):
# angular momentum
cdef:
double p = ie + je
double[3] ijr
int i
double u, v, t
double sd[3][3]
for i in range(3):
ijr[i] = ir[i] - jr[i]
for i in range(3):
sd[0][i] = cye(ia[i], ja[i], 0, ijr[i], ie, je)
sd[1][i] = cye(ia[i], ja[i], 0, ijr[i], ie, je, 1, ir[i]-kr[i])
sd[2][i] = (ja[i] * cye(ia[i], ja[i]-1, 0, ijr[i], ie, je)) - (2.0 * je * cye(ia[i], ja[i]+1, 0, ijr[i], ie, je))
if direction == 1:
return -sd[0][0] * (sd[1][1] * sd[2][2] - sd[1][2] * sd[2][1]) * pow(pi/p, 1.5)
elif direction == 2:
return -sd[0][1] * (sd[1][2] * sd[2][0] - sd[1][0] * sd[2][2]) * pow(pi/p, 1.5)
elif direction == 3:
return -sd[0][2] * (sd[1][0] * sd[2][1] - sd[1][1] * sd[2][0]) * pow(pi/p, 1.5)
#|--------------------------------end momentum helper------------------------------------|
#|---------------------------------begin nabla helper------------------------------------|
cdef double nab(int[3] ia, int[3] ja, double ie, double je, double[3] ir, double[3] jr, int direction):
# dipole moment
cdef:
double p = ie + je
double[3] q, ijr
int i
double u, v, t
double sd[3]
double dd[3]
for i in range(3):
ijr[i] = ir[i] - jr[i]
for i in range(3):
sd[i] = cye(ia[i], ja[i], 0, ijr[i], ie, je)
dd[i] = ja[i] * cye(ia[i], ja[i]-1, 0, ijr[i], ie, je) - 2.0 * je * cye(ia[i], ja[i]+1, 0, ijr[i], ie, je)
return dd[direction-1] * sd[direction % 3] * sd[(direction+1) % 3] * pow(pi/p , 1.5)
#|----------------------------------end nabla helper-------------------------------------|
#get the atom and basis classes
def aello(molAtom, molBasis, mode = 'scf', density = None, gauge = None):
cdef:
int na = len(molAtom)
int nb = len(molBasis)
int ng = len(molBasis[0].co)
int i, j, k, l, m, n, p, q
#get largest primative length
for i in range(nb):
j = len(molBasis[i].co)
if j > ng:
ng = j
#convert atom class properties to c views
mx = np.empty([na,3], dtype = np.double)
mz = np.empty([na], dtype = np.short)
cdef:
double[:,:] alo_x = mx
short[:] alo_z = mz
for p in range(0, na):
for q in range(0, 3):
alo_x[p,q] = molAtom[p].center[q]
alo_z[p] = molAtom[p].number
#convert basis class properties to c-variables
me = np.empty([nb,ng], dtype = np.double)
mc = np.empty([nb,ng], dtype = np.double)
mn = np.empty([nb,ng], dtype = np.double)
ma = np.empty([nb,3], dtype = np.short)
mo = np.empty([nb,3], dtype = np.double)
ml = np.empty([nb], dtype = np.short)
cdef:
double[:,:] alo_e = me
double[:,:] alo_c = mc
double[:,:] alo_n = mn
short[:,:] alo_a = ma
double[:,:] alo_o = mo
short[:] alo = ml
for p in range(0, nb):
alo[p] = len(molBasis[p].co)
for q in range(0, len(molBasis[p].co)):
alo_e[p,q] = molBasis[p].ex[q]
alo_c[p,q] = molBasis[p].co[q]
alo_n[p,q] = molBasis[p].normal[q]
for q in range(0, 3):
alo_a[p,q] = molBasis[p].momentum[q]
alo_o[p,q] = molBasis[p].center[q]
if mode == 'dipole':
return aelloDipole(alo_n, alo_c, alo_e, alo_a, alo_o, alo, alo_z, alo_x, na, nb, molAtom, gauge)
elif mode == 'angular':
return aelloAngular(alo_n, alo_c, alo_e, alo_a, alo_o, alo, alo_z, alo_x, na, nb, molAtom, gauge)
elif mode == 'nabla':
return aelloNabla(alo_n, alo_c, alo_e, alo_a, alo_o, alo, alo_z, alo_x, na, nb, molAtom)
#-------------------------------------Begin Overlap---------------------------------------|
S = np.empty([nb,nb], dtype = np.double)
cdef:
double [:,:] overlap = S
double s, f
for p in range(0, nb):
for q in range(p, nb):
s = 0.0
for i in range(0, alo[p]):
for j in range(0, alo[q]):
f = alo_n[p,i] * alo_n[q,j] * alo_c[p,i] * alo_c[q,j]
s += ovlp(alo_a[p,0], alo_a[p,1], alo_a[p,2], alo_a[q,0], alo_a[q,1], alo_a[q,2], \
0 ,alo_o[p,0] - alo_o[q,0], alo_o[p,1] - alo_o[q,1], alo_o[p,2] - alo_o[q,2], \
alo_e[p,i], alo_e[q,j]) * f
overlap[p,q] = s
if p != q:
overlap[q,p] = overlap[p,q]
#----------------------------------------End Overlap----------------------------------------|
#---------------------------------------Begin Kinetic---------------------------------------|
K = np.empty([nb,nb], dtype = np.double)
cdef:
double[:,:] kinetic = K
double t1, t2, t3
for p in range(0, nb):
for q in range(p, nb):
s = 0.0
for i in range(0, alo[p]):
for j in range(0, alo[q]):
f = alo_n[p,i] * alo_n[q,j] * alo_c[p,i] * alo_c[q,j]
t1 = alo_e[q,j] * (2*(alo_a[q,0] + alo_a[q,1] + alo_a[q,2]) + 3) * \
ovlp(alo_a[p,0], alo_a[p,1], alo_a[p,2], alo_a[q,0], alo_a[q,1], alo_a[q,2], \
0 ,alo_o[p,0] - alo_o[q,0], alo_o[p,1] - alo_o[q,1], alo_o[p,2] - alo_o[q,2], \
alo_e[p,i], alo_e[q,j])
t2 = -2 * alo_e[q,j] * alo_e[q,j] * ( \
ovlp(alo_a[p,0], alo_a[p,1], alo_a[p,2], alo_a[q,0]+2, alo_a[q,1], alo_a[q,2], \
0 ,alo_o[p,0] - alo_o[q,0], alo_o[p,1] - alo_o[q,1], alo_o[p,2] - alo_o[q,2], \
alo_e[p,i], alo_e[q,j]) + \
ovlp(alo_a[p,0], alo_a[p,1], alo_a[p,2], alo_a[q,0], alo_a[q,1]+2, alo_a[q,2], \
0 ,alo_o[p,0] - alo_o[q,0], alo_o[p,1] - alo_o[q,1], alo_o[p,2] - alo_o[q,2], \
alo_e[p,i], alo_e[q,j]) + \
ovlp(alo_a[p,0], alo_a[p,1], alo_a[p,2], alo_a[q,0], alo_a[q,1], alo_a[q,2]+2, \
0 ,alo_o[p,0] - alo_o[q,0], alo_o[p,1] - alo_o[q,1], alo_o[p,2] - alo_o[q,2], \
alo_e[p,i], alo_e[q,j]) )
t3 = alo_a[q,0] * (alo_a[q,0] - 1) * \
ovlp(alo_a[p,0], alo_a[p,1], alo_a[p,2], alo_a[q,0]-2, alo_a[q,1], alo_a[q,2], \
0 ,alo_o[p,0] - alo_o[q,0], alo_o[p,1] - alo_o[q,1], alo_o[p,2] - alo_o[q,2], \
alo_e[p,i], alo_e[q,j])
t3 +=alo_a[q,1] * (alo_a[q,1] - 1) * \
ovlp(alo_a[p,0], alo_a[p,1], alo_a[p,2], alo_a[q,0], alo_a[q,1]-2, alo_a[q,2], \
0 ,alo_o[p,0] - alo_o[q,0], alo_o[p,1] - alo_o[q,1], alo_o[p,2] - alo_o[q,2], \
alo_e[p,i], alo_e[q,j])
t3 +=alo_a[q,2] * (alo_a[q,2] - 1) * \
ovlp(alo_a[p,0], alo_a[p,1], alo_a[p,2], alo_a[q,0], alo_a[q,1], alo_a[q,2]-2, \
0 ,alo_o[p,0] - alo_o[q,0], alo_o[p,1] - alo_o[q,1], alo_o[p,2] - alo_o[q,2], \
alo_e[p,i], alo_e[q,j])
s += (t1 + t2 - 0.5*t3) * f
kinetic[p,q] = s
if p != q:
kinetic[q,p] = kinetic[p,q]
#----------------------------------------End Kinetic----------------------------------------|
#---------------------------------------Begin Coulomb---------------------------------------|
J = np.empty([nb,nb], dtype = np.double)
cdef:
double[:,:] coulomb = J
double r[3]
double cp
for p in range(0, nb):
for q in range(p, nb):
t1 = 0.0
for k in range(0, na):
s = 0.0
for i in range(0, alo[p]):
for j in range(0, alo[q]):
f = alo_n[p,i] * alo_n[q,j] * alo_c[p,i] * alo_c[q,j]
cp = alo_e[p,i] + alo_e[q,j]
for n in range(0, 3):
r[n] = ((alo_e[p,i] * alo_o[p,n]) + (alo_e[q,j] * alo_o[q,n]))/cp - alo_x[k,n]
t2 = 0.0
for l in range(0, alo_a[p,0]+alo_a[q,0]+1):
for m in range(0, alo_a[p,1]+alo_a[q,1]+1):
for n in range(0, alo_a[p,2]+alo_a[q,2]+1):
t2 += cye(alo_a[p,0], alo_a[q,0], l, alo_o[p,0]- alo_o[q,0], alo_e[p,i], alo_e[q,j]) * \
cye(alo_a[p,1], alo_a[q,1], m, alo_o[p,1]- alo_o[q,1], alo_e[p,i], alo_e[q,j]) * \
cye(alo_a[p,2], alo_a[q,2], n, alo_o[p,2]- alo_o[q,2], alo_e[p,i], alo_e[q,j]) * \
clmb(l, m, n, 0, cp, r[0], r[1], r[2])
t2 = t2 * pi * 2.0 / cp
s += t2 * f
t1 -= s * alo_z[k]
coulomb[p,q] = t1
if p != q:
coulomb[q,p] = coulomb[p,q]
#----------------------------------------End Coulomb----------------------------------------|
#----------------------------------Begin electron repulsion---------------------------------|
I = np.empty([nb,nb,nb,nb], dtype=np.double)
cdef:
double[:,:,:,:] eri = I
for i in range(0, nb):
for j in range(0, i+1):
m = i * (i+1)/2 + j
for k in range(0, nb):
for l in range(0, k+1):
n = k*(k+1)/2 + l
if m >= n:
f = tei(alo[i], alo[j], alo[k], alo[l], alo_a, alo_n, alo_c, alo_e, alo_o, i, j, k, l)
I[i,j,k,l]=I[k,l,i,j]=I[j,i,l,k]=I[l,k,j,i]=I[j,i,k,l]=I[l,k,i,j]=I[i,j,l,k]=I[k,l,j,i] = f
#|----------------------------------End electron repulsion----------------------------------|
return S, K, J, I
#---------------------------------------Begin Dipole----------------------------------------|
cpdef aelloDipole(double[:,:] alo_n, double[:,:] alo_c, double[:,:] alo_e, short[:,:] alo_a, double[:,:] alo_o, \
short[:] alo, short[:] alo_z, double[:,:] alo_x, int na, int nb, object molAtom, gauge):
D = np.empty([3,nb,nb], dtype = np.double)
cdef:
double[:,:,:] dipole = D
double[3] gaugeOrigin = gauge
int direction, p, q, i, j
double s, f
double[3] dipoleComponent
for direction in range(3):
#electronic component
for p in range(0, nb):
for q in range(p, -1, -1):
s = 0.0
for i in range(0, alo[p]):
for j in range(0, alo[q]):
f = alo_n[p,i] * alo_n[q,j] * alo_c[p,i] * alo_c[q,j]
s += mu([alo_a[p,0], alo_a[p,1], alo_a[p,2]], [alo_a[q,0], alo_a[q,1], alo_a[q,2]], \
alo_e[p,i], alo_e[q,j], \
[alo_o[p,0], alo_o[p,1], alo_o[p,2]], [alo_o[q,0], alo_o[q,1], alo_o[q,2]], \
gaugeOrigin, direction+1) * f
dipole[direction, p, q] = s
if p != q:
dipole[direction,q,p] = dipole[direction,p,q]
return dipole
#|-----------------------------------------End Dipole---------------------------------------|
#|---------------------------------------Begin Angular--------------------------------------|
cpdef aelloAngular(double[:,:] alo_n, double[:,:] alo_c, double[:,:] alo_e, short[:,:] alo_a, double[:,:] alo_o, \
short[:] alo, short[:] alo_z, double[:,:] alo_x, int na, int nb, object molAtom, gauge):
A = np.empty([3,nb,nb], dtype = np.double)
cdef:
double[:,:,:] angular = A
double[3] gaugeOrigin = gauge
int direction, p, q, i, j
double s, f
for direction in range(0, 3):
#electronic component
for p in range(0, nb):
for q in range(0, p+1):
s = 0.0
for i in range(0, alo[p]):
for j in range(0, alo[q]):
f = alo_n[p,i] * alo_n[q,j] * alo_c[p,i] * alo_c[q,j]
s += ang([alo_a[p,0], alo_a[p,1], alo_a[p,2]], [alo_a[q,0], alo_a[q,1], alo_a[q,2]], \
alo_e[p,i], alo_e[q,j], \
[alo_o[p,0], alo_o[p,1], alo_o[p,2]], [alo_o[q,0], alo_o[q,1], alo_o[q,2]], \
gaugeOrigin, direction+1) * f
angular[direction, p, q] = s
if p != q:
angular[direction,q,p] = -angular[direction,p,q]
return A
#|----------------------------------------End Angular---------------------------------------|
#|----------------------------------------Begin Nabla---------------------------------------|
cpdef aelloNabla(double[:,:] alo_n, double[:,:] alo_c, double[:,:] alo_e, short[:,:] alo_a, double[:,:] alo_o, \
short[:] alo, short[:] alo_z, double[:,:] alo_x, int na, int nb, object molAtom):
N = np.empty([3,nb,nb], dtype = np.double)
cdef:
double[:,:,:] nabla = N
int direction, p, q, i, j
double s, f
double[3] nablaComponent
for direction in range(3):
#electronic component
for p in range(0, nb):
for q in range(p+1):
s = 0.0
for i in range(0, alo[p]):
for j in range(0, alo[q]):
f = alo_n[p,i] * alo_n[q,j] * alo_c[p,i] * alo_c[q,j]
s += nab([alo_a[p,0], alo_a[p,1], alo_a[p,2]], [alo_a[q,0], alo_a[q,1], alo_a[q,2]], \
alo_e[p,i], alo_e[q,j], \
[alo_o[p,0], alo_o[p,1], alo_o[p,2]], [alo_o[q,0], alo_o[q,1], alo_o[q,2]], \
direction+1) * f
nabla[direction, p, q] = s
if p != q:
nabla[direction,q,p] = -nabla[direction,p,q]
return nabla
#|-----------------------------------------End Nabla----------------------------------------|