forked from laurentedel/cml_churn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1_data_ingest.py
executable file
·189 lines (156 loc) · 7.4 KB
/
1_data_ingest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Part 1: Data Ingest
# A data scientist should never be blocked in getting data into their environment,
# so CML is able to ingest data from many sources.
# Whether you have data in .csv files, modern formats like parquet or feather,
# in cloud storage or a SQL database, CML will let you work with it in a data
# scientist-friendly environment.
# Access local data on your computer
#
# Accessing data stored on your computer is a matter of [uploading a file to the CML filesystem and
# referencing from there](https://docs.cloudera.com/machine-learning/cloud/import-data/topics/ml-accessing-local-data-from-your-computer.html).
#
# > Go to the project's **Overview** page. Under the **Files** section, click **Upload**, select the relevant data files to be uploaded and a destination folder.
#
# If, for example, you upload a file called, `mydata.csv` to a folder called `data`, the
# following example code would work.
# ```
# import pandas as pd
#
# df = pd.read_csv('data/mydata.csv')
#
# # Or:
# df = pd.read_csv('/home/cdsw/data/mydata.csv')
# ```
# Access data in S3
#
# Accessing [data in Amazon S3](https://docs.cloudera.com/machine-learning/cloud/import-data/topics/ml-accessing-data-in-amazon-s3-buckets.html)
# follows a familiar procedure of fetching and storing in the CML filesystem.
# > Add your Amazon Web Services access keys to your project's
# > [environment variables](https://docs.cloudera.com/machine-learning/cloud/import-data/topics/ml-environment-variables.html)
# > as `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY`.
#
# To get the the access keys that are used for your in the CDP DataLake, you can follow
# [this Cloudera Community Tutorial](https://community.cloudera.com/t5/Community-Articles/How-to-get-AWS-access-keys-via-IDBroker-in-CDP/ta-p/295485)
#
# The following sample code would fetch a file called `myfile.csv` from the S3 bucket, `data_bucket`, and store it in the CML home folder.
# ```
# # Create the Boto S3 connection object.
# from boto.s3.connection import S3Connection
# aws_connection = S3Connection()
#
# # Download the dataset to file 'myfile.csv'.
# bucket = aws_connection.get_bucket('data_bucket')
# key = bucket.get_key('myfile.csv')
# key.get_contents_to_filename('/home/cdsw/myfile.csv')
# ```
# Access data from Cloud Storage or the Hive metastore
#
# Accessing data from [the Hive metastore](https://docs.cloudera.com/machine-learning/cloud/import-data/topics/ml-accessing-data-from-apache-hive.html)
# that comes with CML only takes a few more steps.
# But first we need to fetch the data from Cloud Storage and save it as a Hive table.
#
# > Specify `STORAGE` as an
# > [environment variable](https://docs.cloudera.com/machine-learning/cloud/import-data/topics/ml-environment-variables.html)
# > in your project settings containing the Cloud Storage location used by the DataLake to store
# > Hive data. On AWS it will `s3a://[something]`, on Azure it will be `abfs://[something]` and on
# > on prem CDSW cluster, it will be `hdfs://[something]`
#
# This was done for you when you ran `0_bootstrap.py`, so the following code is set up to run as is.
# It begins with imports and creating a `SparkSession`.
import os
import sys
from pyspark.sql import SparkSession
from pyspark.sql.types import *
spark = SparkSession\
.builder\
.appName("PythonSQL")\
.master("local[*]")\
.getOrCreate()
# **Note:**
# Our file isn't big, so running it in Spark local mode is fine but you can add the following config
# if you want to run Spark on the kubernetes cluster
#
# > .config("spark.yarn.access.hadoopFileSystems",os.getenv['STORAGE'])\
#
# and remove `.master("local[*]")\`
#
# Since we know the data already, we can add schema upfront. This is good practice as Spark will
# read *all* the Data if you try infer the schema.
schema = StructType(
[
StructField("customerID", StringType(), True),
StructField("gender", StringType(), True),
StructField("SeniorCitizen", StringType(), True),
StructField("Partner", StringType(), True),
StructField("Dependents", StringType(), True),
StructField("tenure", DoubleType(), True),
StructField("PhoneService", StringType(), True),
StructField("MultipleLines", StringType(), True),
StructField("InternetService", StringType(), True),
StructField("OnlineSecurity", StringType(), True),
StructField("OnlineBackup", StringType(), True),
StructField("DeviceProtection", StringType(), True),
StructField("TechSupport", StringType(), True),
StructField("StreamingTV", StringType(), True),
StructField("StreamingMovies", StringType(), True),
StructField("Contract", StringType(), True),
StructField("PaperlessBilling", StringType(), True),
StructField("PaymentMethod", StringType(), True),
StructField("MonthlyCharges", DoubleType(), True),
StructField("TotalCharges", DoubleType(), True),
StructField("Churn", StringType(), True)
]
)
# Now we can read in the data from Cloud Storage into Spark...
storage = os.environ['STORAGE']
telco_data = spark.read.csv(
"{}/datalake/data/churn/WA_Fn-UseC_-Telco-Customer-Churn-.csv".format(
storage),
header=True,
schema=schema,
sep=',',
nullValue='NA'
)
# ...and inspect the data.
telco_data.show()
telco_data.printSchema()
# Now we can store the Spark DataFrame as a file in the local CML file system
# *and* as a table in Hive used by the other parts of the project.
telco_data.coalesce(1).write.csv(
"file:/home/cdsw/raw/telco-data/",
mode='overwrite',
header=True
)
spark.sql("show databases").show()
spark.sql("show tables in default").show()
# Create the Hive table
# This is here to create the table in Hive used be the other parts of the project, if it
# does not already exist.
if ('telco_churn' not in list(spark.sql("show tables in default").toPandas()['tableName'])):
print("creating the telco_churn database")
telco_data\
.write.format("parquet")\
.mode("overwrite")\
.saveAsTable(
'default.telco_churn'
)
# Show the data in the hive table
spark.sql("select * from default.telco_churn").show()
# To get more detailed information about the hive table you can run this:
spark.sql("describe formatted default.telco_churn").toPandas()
# Other ways to access data
# To access data from other locations, refer to the
# [CML documentation](https://docs.cloudera.com/machine-learning/cloud/import-data/index.html).
# Scheduled Jobs
#
# One of the features of CML is the ability to schedule code to run at regular intervals,
# similar to cron jobs. This is useful for **data pipelines**, **ETL**, and **regular reporting**
# among other use cases. If new data files are created regularly, e.g. hourly log files, you could
# schedule a Job to run a data loading script with code like the above.
# > Any script [can be scheduled as a Job](https://docs.cloudera.com/machine-learning/cloud/jobs-pipelines/topics/ml-creating-a-job.html).
# > You can create a Job with specified command line arguments or environment variables.
# > Jobs can be triggered by the completion of other jobs, forming a
# > [Pipeline](https://docs.cloudera.com/machine-learning/cloud/jobs-pipelines/topics/ml-creating-a-pipeline.html)
# > You can configure the job to email individuals with an attachment, e.g. a csv report which your
# > script saves at: `/home/cdsw/job1/output.csv`.
# Try running this script `1_data_ingest.py` for use in such a Job.