forked from laurentedel/cml_churn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchurnexplainer.py
183 lines (156 loc) · 6.69 KB
/
churnexplainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import datetime, dill, os
import pandas as pd
from sklearn.pipeline import TransformerMixin
from sklearn.preprocessing import LabelEncoder
"""
Explained model is a class that has attributes:
- data, i.e. the features you get for a given dataset from load_dataset. This
is a pandas dataframe that may include categorical variables.
- labels, i.e. the boolean labels you get for a given dataset from
load_dataset.
- categoricalencoder, a fitted sklearn Transformer object that transforms
the categorical columns in `data` to deterministic integer codes, yielding a
plain numpy array often called `X` (leaves non-categorical columns
untouched)
- pipeline, a trained sklearn pipeline that takes `X` as input and predicts.
- explainer, an instantiated LIME explainer that yields an explanation when
it's explain instance method is run on an example `X`
properties:
- default_data
- categorical_features
- non_categorical_features
- dtypes
and methods for API (which works in terms of dictionaries):
- cast_dct, converts values of dictionary to dtype corresponding to key
- explain_dct, returns prediction and explanation for example dictionary
and methods for users (who usually have dataframes):
- predict_df, returns predictions for a df, i.e. runs it through categorical
encoder and pipeline
- explain_df, returns predictions and explanation for example dataframe
"""
class ExplainedModel():
def __init__(self, model_name=None, labels=None, data=None, #dataset=None, data=None, labels=None,
categoricalencoder=None, pipeline=None, explainer=None, data_dir=None,
load=True):
if model_name is not None:
self.model_name = model_name
self.is_loaded = False
else:
self.data = data
self.labels = labels
self.categoricalencoder = categoricalencoder
self.pipeline = pipeline
self.explainer = explainer
self.is_loaded = True
self.model_dir = os.path.join(data_dir, 'models', self.model_name)
self.model_path = os.path.join(self.model_dir,
self.model_name + '.pkl')
# if asked to load and not yet loaded, load model!
if load and not self.is_loaded:
self.load()
def load(self):
if not self.is_loaded:
with open(self.model_path, 'rb') as f:
self.__dict__.update(dill.load(f))
self.is_loaded = True
def save(self):
dilldict = {
'data': self.data,
'labels': self.labels,
'categoricalencoder': self.categoricalencoder,
'pipeline': self.pipeline,
'explainer': self.explainer
}
#self._make_model_dir()
with open(self.model_path, 'wb') as f:
dill.dump(dilldict, f)
# def _make_model_name(self):
# now = datetime.datetime.now().strftime("%Y%m%dT%H%M%S")
# model_type = os.environ.get('CHURN_MODEL_TYPE', 'linear')
# #model_name = '_'.join([now, self.dataset, model_type, get_git_hash()])
# model_name = '_'.join([now, self.dataset, model_type])
# return model_name
#
# def _make_model_dir(self):
# if not os.path.exists(self.model_dir):
# os.makedirs(self.model_dir)
def predict_df(self, df):
X = self.categoricalencoder.transform(df)
return self.pipeline.predict_proba(X)[:, 1]
def explain_df(self, df):
X = self.categoricalencoder.transform(df)
probability = self.pipeline.predict_proba(X)[0, 1]
e = self.explainer.explain_instance(
X[0], self.pipeline.predict_proba
).as_map()[1]
explanations = {self.explainer.feature_names[c]: weight
for c, weight in e}
return probability, explanations
def explain_dct(self, dct):
return self.explain_df(pd.DataFrame([dct]))
def cast_dct(self, dct):
return {k: self.dtypes[k].type(v) for k, v in dct.items()}
@property
def dtypes(self):
if not hasattr(self, '_dtypes'):
d = self.data[self.non_categorical_features].dtypes.to_dict()
d.update({c: self.data[c].cat.categories.dtype
for c in self.categorical_features})
self._dtypes = d
return self._dtypes
@property
def non_categorical_features(self):
return list(self.data.select_dtypes(exclude=['category']).columns
.drop(self.labels.name + ' probability'))
@property
def categorical_features(self):
return list(self.data.select_dtypes(include=['category']).columns)
@property
def stats(self):
def describe(s):
return {'median': s.median(),
'mean': s.mean(),
'min': s.min(),
'max': s.max(),
'std': s.std()}
if not hasattr(self, '_stats'):
self._stats = {c: describe(self.data[c])
for c in self.non_categorical_features}
return self._stats
@property
def label_name(self):
return self.labels.name + ' probability'
@property
def categories(self):
return {feature: list(self.categoricalencoder.classes_[feature])
for feature in self.categorical_features}
@property
def default_data(self):
# 0th class for categorical variables and mean for continuous
if not hasattr(self, '_default_data'):
d = {}
d.update({feature: self.categoricalencoder.classes_[feature][0]
for feature in self.categorical_features})
d.update({feature: self.data[feature].median()
for feature in self.non_categorical_features})
self._default_data = d
return self._default_data
class CategoricalEncoder(TransformerMixin):
def fit(self, X, y=None, *args, **kwargs):
self.columns_ = X.columns
self.cat_columns_ix_ = {c: i for i, c in enumerate(X.columns)
if pd.api.types.is_categorical_dtype(X[c])}
self.cat_columns_ = pd.Index(self.cat_columns_ix_.keys())
self.non_cat_columns_ = X.columns.drop(self.cat_columns_)
self.les_ = {c: LabelEncoder().fit(X[c])
for c in self.cat_columns_}
self.classes_ = {c: list(self.les_[c].classes_)
for c in self.cat_columns_}
return self
def transform(self, X, y=None, *args, **kwargs):
data = X[self.columns_].values
for c, i in self.cat_columns_ix_.items():
data[:, i] = self.les_[c].transform(data[:, i])
return data.astype(float)
def __repr__(self):
return('{}()'.format(self.__class__.__name__))