-
-
Notifications
You must be signed in to change notification settings - Fork 624
198 lines (155 loc) · 6.29 KB
/
gpu-hvd-tests.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
name: Run HVD-specific unit tests on GPUs
on:
push:
paths:
- "ignite/**"
- "tests/ignite/**"
- "tests/run_gpu_tests.sh"
- "tests/run_code_style.sh"
- "examples/**.py"
- "requirements-dev.txt"
- ".github/workflows/gpu-hvd-tests.yml"
workflow_dispatch:
concurrency:
# <workflow_name>-<branch_name>-<true || commit_sha (if branch is protected)>
group: gpu-hvd-tests-${{ github.ref_name }}-${{ !(github.ref_protected) || github.sha }}
cancel-in-progress: true
# Cherry-picked from https://github.com/pytorch/test-infra/blob/main/.github/workflows/linux_job.yml
jobs:
gpu-hvd-tests:
strategy:
matrix:
pytorch-channel: [pytorch, ]
fail-fast: false
env:
DOCKER_IMAGE: "pytorch/conda-builder:cuda12.1"
REPOSITORY: ${{ github.repository }}
PR_NUMBER: ${{ github.event.pull_request.number }}
runs-on: linux.8xlarge.nvidia.gpu
timeout-minutes: 60
steps:
- name: Clean workspace
run: |
echo "::group::Cleanup debug output"
sudo rm -rfv "${GITHUB_WORKSPACE}"
mkdir -p "${GITHUB_WORKSPACE}"
echo "::endgroup::"
- name: Checkout repository (pytorch/test-infra)
uses: actions/checkout@v3
with:
# Support the use case where we need to checkout someone's fork
repository: pytorch/test-infra
path: test-infra
- name: Setup Linux
uses: ./test-infra/.github/actions/setup-linux
- name: Pull docker image
uses: ./test-infra/.github/actions/pull-docker-image
with:
docker-image: ${{ env.DOCKER_IMAGE }}
- name: Checkout repository (${{ github.repository }})
uses: actions/checkout@v3
with:
# Support the use case where we need to checkout someone's fork
repository: ${{ github.repository }}
ref: ${{ github.ref }}
path: ${{ github.repository }}
fetch-depth: 1
- name: Start Pytorch container
working-directory: ${{ github.repository }}
run: |
docker run --name pthd --gpus=all --rm \
--cap-add=SYS_PTRACE \
--detach \
--ipc=host \
--security-opt seccomp=unconfined \
--shm-size=2g \
--tty \
--ulimit stack=10485760:83886080 \
-v $PWD:/work \
-w /work \
${DOCKER_IMAGE}
script=$(cat << EOF
set -xe
nvidia-smi
ls -alh
conda --version
python --version
EOF
)
docker exec -t pthd /bin/bash -c "${script}"
- name: Install PyTorch and dependencies
continue-on-error: false
run: |
script=$(cat << EOF
set -xe
# Install PyTorch
if [ "${{ matrix.pytorch-channel }}" == "pytorch" ]; then
pip install --upgrade torch torchvision --index-url https://download.pytorch.org/whl/cu121
else
pip install --upgrade --pre torch torchvision --index-url https://download.pytorch.org/whl/nightly/cu121
fi
python -c "import torch; print(torch.__version__, ', CUDA is available: ', torch.cuda.is_available()); exit(not torch.cuda.is_available())"
pip list
# Install dependencies
pip install -r requirements-dev.txt
pip install -e .
EOF
)
docker exec -t pthd /bin/bash -c "${script}"
- name: Install Horovod with NCCL GPU ops
run: |
script=$(cat << EOF
set -xe
# Can't build Horovod with recent pytorch due to pytorch required C++17 standard
# and horovod is still using C++14
# HOROVOD_GPU_OPERATIONS=NCCL HOROVOD_WITH_PYTORCH=1 pip install horovod[pytorch]
# Using a similar hack as described here:
# https://github.com/horovod/horovod/issues/3941#issuecomment-1732505345
git clone --recursive https://github.com/horovod/horovod.git /horovod
cd /horovod
sed -i "s/CMAKE_CXX_STANDARD 14/CMAKE_CXX_STANDARD 17/g" CMakeLists.txt
sed -i "s/CMAKE_CXX_STANDARD 14/CMAKE_CXX_STANDARD 17/g" horovod/torch/CMakeLists.txt
HOROVOD_GPU_OPERATIONS=NCCL HOROVOD_WITH_PYTORCH=1 python setup.py install
horovodrun --check-build
pip list
EOF
)
docker exec -t pthd /bin/bash -c "${script}"
- name: Run GPU and CPU Unit HVD Tests
run: |
script=$(cat << EOF
set -xe
bash tests/run_gpu_tests.sh 2 hvd
CUDA_VISIBLE_DEVICES="" pytest --cov ignite --cov-append --cov-report term-missing --cov-report xml -vvv tests/ -m distributed -k hvd
EOF
)
docker exec -t pthd /bin/bash -c "${script}"
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3
with:
file: ${{ github.repository }}/coverage.xml
flags: gpu-2
fail_ci_if_error: false
- name: Run examples in container
continue-on-error: false
run: |
SCRIPT=$(cat << EOF
set -xe
# Install additional example dependencies
pip install fire
# Check training on CIFAR10, run with horovod backend using horovodrun
# initial run
CI=1 horovodrun -np 2 python -u examples/cifar10/main.py run --backend=horovod --checkpoint_every=200 --stop_iteration=500
# resume
CI=1 horovodrun -np 2 python examples/cifar10/main.py run --checkpoint_every=200 --num_epochs=7 --resume-from=/tmp/output-cifar10/resnet18_backend-horovod-2_stop-on-500/training_checkpoint_400.pt
# Check training on CIFAR10 using spawn
# initial run
CI=1 python -u examples/cifar10/main.py run --backend=horovod --nproc_per_node=2 --checkpoint_every=200 --stop_iteration=500
# resume
CI=1 python -u examples/cifar10/main.py run --backend=horovod --nproc_per_node=2 --checkpoint_every=200 --num_epochs=7 --resume-from=/tmp/output-cifar10/resnet18_backend-horovod-2_stop-on-500/training_checkpoint_400.pt
EOF
)
docker exec -t pthd /bin/bash -c "${script}"
- name: Teardown Linux
if: ${{ always() }}
uses: ./test-infra/.github/actions/teardown-linux