You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I think I found a bug at around this part of the code in the functional multiclass_recall. When one of the class is missing for both prediction and label, only the num_tp is masked and not the num_labels, which causes a mismatch between the shape of num_tp and num_labels. For example,
Traceback (most recent call last):
File "playground.py", line 1205, in <module>
multiclass_recall(input1, label1, num_classes=num_class, average="macro")
File "/opt/conda/lib/python3.7/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/opt/conda/lib/python3.7/site-packages/torcheval/metrics/functional/classification/recall.py", line 151, in multiclass_recall
return _recall_compute(num_tp, num_labels, num_predictions, average)
File "/opt/conda/lib/python3.7/site-packages/torcheval/metrics/functional/classification/recall.py", line 193, in _recall_compute
recall = num_tp / num_labels
RuntimeError: The size of tensor a (5) must match the size of tensor b (6) at non-singleton dimension 0
Versions
Collecting environment information...
PyTorch version: 1.12.1
Is debug build: False
CUDA used to build PyTorch: 11.3
ROCM used to build PyTorch: N/A
OS: Ubuntu 18.04.6 LTS (x86_64)
GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Clang version: Could not collect
CMake version: version 3.26.3
Libc version: glibc-2.17
Python version: 3.7.13 (default, Mar 29 2022, 02:18:16) [GCC 7.5.0] (64-bit runtime)
Python platform: Linux-4.19.91-26.al7.x86_64-x86_64-with-debian-buster-sid
Is CUDA available: True
CUDA runtime version: 11.3.109
CUDA_MODULE_LOADING set to:
GPU models and configuration: GPU 0: Tesla T4
Nvidia driver version: 470.103.01
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.2.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
🐛 Describe the bug
I think I found a bug at around this part of the code in the functional multiclass_recall. When one of the class is missing for both prediction and label, only the
num_tp
is masked and not thenum_labels
, which causes a mismatch between the shape ofnum_tp
andnum_labels
. For example,will get an error of
Versions
Collecting environment information...
PyTorch version: 1.12.1
Is debug build: False
CUDA used to build PyTorch: 11.3
ROCM used to build PyTorch: N/A
OS: Ubuntu 18.04.6 LTS (x86_64)
GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Clang version: Could not collect
CMake version: version 3.26.3
Libc version: glibc-2.17
Python version: 3.7.13 (default, Mar 29 2022, 02:18:16) [GCC 7.5.0] (64-bit runtime)
Python platform: Linux-4.19.91-26.al7.x86_64-x86_64-with-debian-buster-sid
Is CUDA available: True
CUDA runtime version: 11.3.109
CUDA_MODULE_LOADING set to:
GPU models and configuration: GPU 0: Tesla T4
Nvidia driver version: 470.103.01
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.2.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0-3
Thread(s) per core: 2
Core(s) per socket: 2
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz
Stepping: 4
CPU MHz: 2499.998
BogoMIPS: 4999.99
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 33792K
NUMA node0 CPU(s): 0-3
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat
Versions of relevant libraries:
[pip3] mypy==1.2.0
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.21.5
[pip3] torch==1.12.1
[pip3] torcheval==0.0.6
[pip3] torchtext==0.13.1
[pip3] torchtnt==0.0.7
[pip3] torchvision==0.13.1
[pip3] triton==2.0.0.post1
[conda] blas 1.0 mkl
[conda] cudatoolkit 11.3.1 ha36c431_9 nvidia
[conda] ffmpeg 4.3 hf484d3e_0 pytorch
[conda] mkl 2021.4.0 h06a4308_640
[conda] mkl-service 2.4.0 py37h7f8727e_0
[conda] mkl_fft 1.3.1 py37hd3c417c_0
[conda] mkl_random 1.2.2 py37h51133e4_0
[conda] numpy 1.21.5 py37he7a7128_2
[conda] numpy-base 1.21.5 py37hf524024_2
[conda] pytorch 1.12.1 py3.7_cuda11.3_cudnn8.3.2_0 pytorch
[conda] pytorch-mutex 1.0 cuda pytorch
[conda] torcheval 0.0.6 pypi_0 pypi
[conda] torchtext 0.13.1 py37 pytorch
[conda] torchtnt 0.0.7 pypi_0 pypi
[conda] torchvision 0.13.1 py37_cu113 pytorch
[conda] triton 2.0.0.post1 pypi_0 pypi
The text was updated successfully, but these errors were encountered: