-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathdataset.py
316 lines (265 loc) · 10.2 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import pathlib
import h5py
import numpy as np
import pandas as pd
import torch
from einops import rearrange
class MixedDataset(torch.utils.data.Dataset):
def __init__(
self,
augmentation_size,
binary_data_folder="data/binary",
prefix="train",
):
# do not open hdf5 here
self.h5py_file = None
self.label_types = None
self.wav_lengths = None
if augmentation_size > 0:
self.augmentation_indexes = np.arange(augmentation_size + 1)
else:
self.augmentation_indexes = None
self.binary_data_folder = binary_data_folder
self.prefix = prefix
def get_label_types(self):
uninitialized = self.label_types is None
if uninitialized:
self._open_h5py_file()
ret = self.label_types
if uninitialized:
self._close_h5py_file()
return ret
def get_wav_lengths(self):
uninitialized = self.wav_lengths is None
if uninitialized:
self._open_h5py_file()
ret = self.wav_lengths
if uninitialized:
self._close_h5py_file()
return ret
def _open_h5py_file(self):
self.h5py_file = h5py.File(
str(pathlib.Path(self.binary_data_folder) / (self.prefix + ".h5py")), "r"
)
self.label_types = np.array(self.h5py_file["meta_data"]["label_types"])
self.wav_lengths = np.array(self.h5py_file["meta_data"]["wav_lengths"])
def _close_h5py_file(self):
self.h5py_file.close()
self.h5py_file = None
def __len__(self):
uninitialized = self.h5py_file is None
if uninitialized:
self._open_h5py_file()
ret = len(self.h5py_file["items"])
if uninitialized:
self._close_h5py_file()
return ret
def __getitem__(self, index):
if self.h5py_file is None:
self._open_h5py_file()
item = self.h5py_file["items"][str(index)]
# input_feature
if self.augmentation_indexes is None:
input_feature = np.array(item["input_feature"])
else:
indexes = np.random.choice(self.augmentation_indexes, 2)
input_feature = np.array(item["input_feature"])[indexes, :, :]
# label_type
label_type = np.array(item["label_type"])
# ph_seq
ph_seq = np.array(item["ph_seq"])
# ph_edge
ph_edge = np.array(item["ph_edge"])
# ph_frame
ph_frame = np.array(item["ph_frame"])
# ph_mask
ph_mask = np.array(item["ph_mask"])
input_feature = np.repeat(
input_feature, len(ph_frame) // input_feature.shape[-1], axis=-1
)
return input_feature, ph_seq, ph_edge, ph_frame, ph_mask, label_type
class WeightedBinningAudioBatchSampler(torch.utils.data.Sampler):
def __init__(
self,
type_ids,
wav_lengths,
oversampling_weights=None,
max_length=100,
binning_length=1000,
drop_last=False,
):
if oversampling_weights is None:
oversampling_weights = [1] * (max(type_ids) + 1)
oversampling_weights = np.array(oversampling_weights).astype(np.float32)
assert min(oversampling_weights) > 0
assert len(oversampling_weights) >= max(type_ids) + 1
assert min(type_ids) >= 0
assert len(type_ids) == len(wav_lengths)
assert max_length > 0
assert binning_length > 0
count = np.bincount(type_ids)
count = np.pad(count, (0, len(oversampling_weights) - len(count)))
self.oversampling_weights = oversampling_weights / min(
oversampling_weights[count > 0]
)
self.max_length = max_length
self.drop_last = drop_last
# sort by wav_lengths
meta_data = (
pd.DataFrame(
{
"dataset_index": range(len(type_ids)),
"type_id": type_ids,
"wav_length": wav_lengths,
}
)
.sort_values(by=["wav_length"], ascending=False)
.reset_index(drop=True)
)
# binning and compute oversampling num
self.bins = []
curr_bin_start_index = 0
curr_bin_max_item_length = meta_data.loc[0, "wav_length"]
for i in range(len(meta_data)):
if curr_bin_max_item_length * (i - curr_bin_start_index) > binning_length:
bin_data = {
"batch_size": self.max_length // curr_bin_max_item_length,
"num_batches": 0,
"type": [],
}
item_num = 0
for type_id, weight in enumerate(self.oversampling_weights):
idx_list = (
meta_data.loc[curr_bin_start_index : i - 1]
.loc[meta_data["type_id"] == type_id]
.to_dict(orient="list")["dataset_index"]
)
oversample_num = np.round(len(idx_list) * (weight - 1))
bin_data["type"].append(
{
"idx_list": idx_list,
"oversample_num": oversample_num,
}
)
item_num += len(idx_list) + oversample_num
if bin_data["batch_size"] <= 0:
raise ValueError(
"batch_size <= 0, maybe batch_max_length in training config is too small "
"or max_length in binarizing config is too long."
)
num_batches = item_num / bin_data["batch_size"]
if self.drop_last:
bin_data["num_batches"] = int(num_batches)
else:
bin_data["num_batches"] = int(np.ceil(num_batches))
self.bins.append(bin_data)
curr_bin_start_index = i
curr_bin_max_item_length = meta_data.loc[i, "wav_length"]
self.len = None
def __len__(self):
if self.len is None:
self.len = 0
for bin_data in self.bins:
self.len += bin_data["num_batches"]
return self.len
def __iter__(self):
np.random.shuffle(self.bins)
for bin_data in self.bins:
batch_size = bin_data["batch_size"]
num_batches = bin_data["num_batches"]
idx_list = []
for type_id, weight in enumerate(self.oversampling_weights):
idx_list_of_type = bin_data["type"][type_id]["idx_list"]
oversample_num = bin_data["type"][type_id]["oversample_num"]
if len(idx_list_of_type) > 0:
idx_list.extend(idx_list_of_type)
oversample_idx_list = np.random.choice(
idx_list_of_type, int(oversample_num)
)
idx_list.extend(oversample_idx_list)
idx_list = np.random.permutation(idx_list)
if self.drop_last:
num_batches = int(num_batches)
idx_list = idx_list[: num_batches * batch_size]
else:
num_batches = int(np.ceil(num_batches))
random_idx = np.random.choice(
idx_list, int(num_batches * batch_size - len(idx_list))
)
idx_list = np.concatenate([idx_list, random_idx])
np.random.shuffle(idx_list)
for i in range(num_batches):
yield idx_list[int(i * batch_size) : int((i + 1) * batch_size)]
def collate_fn(batch):
"""_summary_
Args:
batch (tuple): input_feature, ph_seq, ph_edge, ph_frame, ph_mask, label_type from MixedDataset
Returns:
input_feature: (B C T)
input_feature_lengths: (B)
ph_seq: (B S)
ph_seq_lengths: (B)
ph_edge: (B T)
ph_frame: (B T)
ph_mask: (B vocab_size)
label_type: (B)
"""
input_feature_lengths = torch.tensor([i[0].shape[-1] for i in batch])
max_len = max(input_feature_lengths)
ph_seq_lengths = torch.tensor([len(item[1]) for item in batch])
max_ph_seq_len = max(ph_seq_lengths)
if batch[0][0].shape[0] > 1:
augmentation_enabled = True
else:
augmentation_enabled = False
# padding
for i, item in enumerate(batch):
item = list(item)
for param in [0, 2, 3]:
item[param] = torch.nn.functional.pad(
torch.tensor(item[param]),
(0, max_len - item[param].shape[-1]),
"constant",
0,
)
item[1] = torch.nn.functional.pad(
torch.tensor(item[1]),
(0, max_ph_seq_len - item[1].shape[-1]),
"constant",
0,
)
item[4] = torch.from_numpy(item[4])
batch[i] = tuple(item)
input_feature = torch.stack([item[0] for item in batch], dim=1)
input_feature = rearrange(input_feature, "n b c t -> (n b) c t")
ph_seq = torch.stack([item[1] for item in batch])
ph_edge = torch.stack([item[2] for item in batch])
ph_frame = torch.stack([item[3] for item in batch])
ph_mask = torch.stack([item[4] for item in batch])
label_type = torch.tensor(np.array([item[5] for item in batch]))
if augmentation_enabled:
input_feature_lengths = torch.concat(
[input_feature_lengths, input_feature_lengths], dim=0
)
ph_seq = torch.concat([ph_seq, ph_seq], dim=0)
ph_seq_lengths = torch.concat([ph_seq_lengths, ph_seq_lengths], dim=0)
ph_edge = torch.concat([ph_edge, ph_edge], dim=0)
ph_frame = torch.concat([ph_frame, ph_frame], dim=0)
ph_mask = torch.concat([ph_mask, ph_mask], dim=0)
label_type = torch.concat([label_type, label_type], dim=0)
return (
input_feature,
input_feature_lengths,
ph_seq,
ph_seq_lengths,
ph_edge,
ph_frame,
ph_mask,
label_type,
)
if __name__ == "__main__":
dataset = MixedDataset(2)
print(dataset[0])
# sampler = WeightedBinningAudioBatchSampler(dataset.get_label_types(), dataset.get_wav_lengths(), [1, 0.3, 0.4])
# for i in tqdm(sampler):
# print(len(i))