#问题
用递归方式遍历二叉树
#思路说明
遍历二叉树的方法有广度优先和深度优先两类,下面阐述的是深度优先。
以下图的二叉树为例:
先定义三个符号标记:
- 访问结点本身(N)
- 遍历该结点的左子树(L)
- 遍历该结点的右子树(R)
有四种方式:
- 前序遍历(PreorderTraversal,NLR):先访问根结点,然后遍历其左右子树
- 中序遍历(InorderTraversal,LNR):先访问左子树,然后访问根节点,再访问右子树
- 后序遍历(PostorderTraversal,LRN):先访问左右子树,再访问根结点
- 层序遍历(levelorderTraversal):按照从上到下的层顺序访问
上面的数,按照以上四种方式遍历,得到的结果依次是:
- preorder: 1 2 4 7 5 3 6 8 9
- inorder: 7 4 2 5 1 8 6 9 3
- postorder: 7 4 5 2 8 9 6 3 1
- level-order: 1 2 3 4 5 6 7 8 9
下面用递归的方式,解决此题。
#解决(Python)
#! /usr/bin/env python
#coding:utf-8
from collections import namedtuple
from sys import stdout
Node = namedtuple('Node', 'data, left, right')
tree = Node(1,
Node(2,
Node(4,
Node(7, None, None),
None),
Node(5, None, None)),
Node(3,
Node(6,
Node(8, None, None),
Node(9, None, None)),
None))
#前序(pre-order,NLR)
def preorder(node):
if node is not None:
print node.data,
preorder(node.left)
preorder(node.right)
#中序(in-order,LNR)
def inorder(node):
if node is not None:
inorder(node.left)
print node.data,
inorder(node.right)
#后序(post-order,LRN)
def postorder(node):
if node is not None:
postorder(node.left)
postorder(node.right)
print node.data,
#层序(level-order)
def levelorder(node, more=None):
if node is not None:
if more is None:
more = []
more += [node.left, node.right]
print node.data,
if more:
levelorder(more[0], more[1:])
if __name__=="__main__"
print ' preorder: ',
preorder(tree)
print '\t\n inorder: ',
inorder(tree)
print '\t\n postorder: ',
postorder(tree)
print '\t\nlevelorder: ',
levelorder(tree)
print '\n'