forked from lindawangg/COVID-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
89 lines (74 loc) · 4.01 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from sklearn.metrics import confusion_matrix
import numpy as np
import tensorflow as tf
import os, argparse
import cv2
from data import process_image_file
# To remove TF Warnings
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
def eval(sess, graph, testfile, testfolder, input_tensor, output_tensor, input_size, mapping):
image_tensor = graph.get_tensor_by_name(input_tensor)
pred_tensor = graph.get_tensor_by_name(output_tensor)
y_test = []
pred = []
for i in range(len(testfile)):
line = testfile[i].split()
x = process_image_file(os.path.join(testfolder, line[1]), 0.08, input_size)
x = x.astype('float32') / 255.0
y_test.append(mapping[line[2]])
pred.append(np.array(sess.run(pred_tensor, feed_dict={image_tensor: np.expand_dims(x, axis=0)})).argmax(axis=1))
y_test = np.array(y_test)
pred = np.array(pred)
matrix = confusion_matrix(y_test, pred)
matrix = matrix.astype('float')
#cm_norm = matrix / matrix.sum(axis=1)[:, np.newaxis]
print(matrix)
#class_acc = np.array(cm_norm.diagonal())
class_acc = [matrix[i,i]/np.sum(matrix[i,:]) if np.sum(matrix[i,:]) else 0 for i in range(len(matrix))]
print('Sens', ', '.join('{}: {:.3f}'.format(cls.capitalize(), class_acc[i]) for cls, i in mapping.items()))
ppvs = [matrix[i,i]/np.sum(matrix[:,i]) if np.sum(matrix[:,i]) else 0 for i in range(len(matrix))]
print('PPV', ', '.join('{}: {:.3f}'.format(cls.capitalize(), ppvs[i]) for cls, i in mapping.items()))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='COVID-Net Evaluation')
parser.add_argument('--weightspath', default='models/COVIDNet-CXR-2', type=str, help='Path to model files, defaults to \'models/COVIDNet-CXR-2\'')
parser.add_argument('--metaname', default='model.meta', type=str, help='Name of ckpt meta file')
parser.add_argument('--ckptname', default='model', type=str, help='Name of model ckpts')
parser.add_argument('--n_classes', default=2, type=int, help='Number of detected classes, defaults to 2')
parser.add_argument('--testfile', default='labels/test_COVIDx8B.txt', type=str, help='Name of testfile')
parser.add_argument('--testfolder', default='data/test', type=str, help='Folder where test data is located')
parser.add_argument('--in_tensorname', default='input_1:0', type=str, help='Name of input tensor to graph')
parser.add_argument('--out_tensorname', default='norm_dense_2/Softmax:0', type=str, help='Name of output tensor from graph')
parser.add_argument('--input_size', default=480, type=int, help='Size of input (ex: if 480x480, --input_size 480)')
parser.add_argument('--is_severity_model', action='store_true', help='Add flag if training COVIDNet CXR-S model')
args = parser.parse_args()
sess = tf.Session()
tf.get_default_graph()
saver = tf.train.import_meta_graph(os.path.join(args.weightspath, args.metaname))
saver.restore(sess, os.path.join(args.weightspath, args.ckptname))
graph = tf.get_default_graph()
file = open(args.testfile, 'r')
testfile = file.readlines()
if args.is_severity_model:
# For COVIDNet CXR-S training with COVIDxSev level 1 and level 2 air space seveirty grading
mapping = {
'level2': 0,
'level1': 1
}
elif args.n_classes == 2:
# For COVID-19 positive/negative detection
mapping = {
'negative': 0,
'positive': 1,
}
elif args.n_classes == 3:
# For detection of no pneumonia/non-COVID-19 pneumonia/COVID-19 pneumonia
mapping = {
'normal': 0,
'pneumonia': 1,
'COVID-19': 2
}
else:
raise Exception('''COVID-Net currently only supports 2 class COVID-19 positive/negative detection
or 3 class detection of no pneumonia/non-COVID-19 pneumonia/COVID-19 pneumonia''')
eval(sess, graph, testfile, args.testfolder, args.in_tensorname, args.out_tensorname, args.input_size, mapping)